
PARALLELIZATION OF ENTITY-BASED MODELS IN

COMPUTATIONAL SOCIAL SCIENCE: A HARDWARE PERSPECTIVE

by

Dale K. Brearcliffe

A Thesis

Submitted to the

Graduate Faculty

of

George Mason University

in Partial Fulfillment of

The Requirements for the Degree

of

Master of Arts

Interdisciplinary Studies

Committee:

___ Director

___ Program Director

___ Dean, College of Humanities

 and Social Sciences

Date: ______________________________________ Fall Semester 2017

 George Mason University

 Fairfax, VA

i

Parallelization of Entity-Based Models in Computational Social Science: A Hardware

Perspective

A Thesis submitted in partial fulfillment of the requirements for the degree of Master of

Arts at George Mason University

by

Dale K. Brearcliffe

Bachelor of Science

California State University Hayward (East Bay), 1983

Director: Andrew Crooks, Associate Professor;

Department of Computational and Data Sciences

Fall Semester 2017

George Mason University

Fairfax, Virginia

ii

This work is licensed under a Creative Commons

Attribution-NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

iii

DEDICATION

To my grandmother, Mary Eleanor Brearcliffe (1914 - 2009), who understood the

importance of education.

iv

ACKNOWLEDGMENTS

I thank my advisor, Dr. Andrew Crooks, and thesis committee members Dr. Robert

Axtell and Dr. William G. Kennedy for insightful instruction and hours of enjoyable

conversation. I also thank Karen Underwood for herding all the cats in the same

direction.

v

TABLE OF CONTENTS

Page

List of Tables ... viii

List of Figures .. ix

List of Abbreviations ...x

Abstract .. xi

1. Introduction ...1

1.1. Introduction ..1

1.2. Research Questions ..5

1.3. Thesis Outline ..5

2. Background ...6

2.1. Entity-Based Models ..6

2.2. The Need for Parallelization ..7

2.3. Frameworks for Entity-Based Models ...9

2.4. Hardware Categories ..10

2.5. Recent Efforts to Parallelize EBMs or Conduct Experiments13

3. General Methodology ..18

3.1. Measurable Results ..18

3.2. Experiment Structure ...18

3.3. Programming Language Selection ...19

3.4. The Zero-Intelligence Traders Entity-Based Model in Parallel19

4. Applied Parallelism ...21

4.1. Multi-Core Central Processing Unit ..21

4.2. Graphic Processing Unit ..21

4.2.1. Introduction ..21

vi

4.2.2. Hardware ..23

4.2.3. Justification ..23

4.2.4. Operating System and Environment ..24

4.2.5. Programming Language ...24

4.2.6. Approach ..24

4.2.7. Experiment and Results ...27

4.2.8. Recommendation ...29

4.3. Application Specific Integrated Circuit ...30

4.3.1. Introduction ..30

4.3.2. Hardware ..30

4.3.3. Justification ..32

4.3.4. Operating System and Environment ..32

4.3.5. Programming Language ...32

4.3.6. Approach ..32

4.3.7. Experiment and Results ...33

4.3.8. Recommendation ...35

4.4. High Performance Computing Cluster ...36

4.4.1. Introduction ..36

4.4.2. Hardware ..36

4.4.3. Justification ..36

4.4.4. Operating System and Environment ..37

4.4.5. Programming Language ...37

4.4.6. Approach ..37

4.4.7. Experiment and Results ...39

4.4.8. Recommendation ...43

5. Model Verification and Validation ..45

5.1. Verification ..45

5.2. Validation ...45

6. Summerized Results and Conclusion ..46

vii

6.1. Overview of Research Findings ...46

6.2. Future Research ...51

6.3. Conclusion ...51

Appendix A - Lexicon ...53

References ..56

Biography ...65

viii

LIST OF TABLES

Table Page

Table 1 - Hardware Categories ..11

Table 2 - Pseudo Code Parallelization of the ZIT Model ..20

Table 3 - GPU Hardware ...23

Table 4 - GPGPU ZIT Results ...27

Table 5 - ASIC ZIT Results ...34

Table 6 - ZIT Time to Complete on HPC Cluster ...42

Table 7 - Research Question Recap ...50

file:///D:/Bugbear/School/GMU/Thesis/Thesis-Brearcliffe-20171122.docx%23_Toc499053177
file:///D:/Bugbear/School/GMU/Thesis/Thesis-Brearcliffe-20171122.docx%23_Toc499053178
file:///D:/Bugbear/School/GMU/Thesis/Thesis-Brearcliffe-20171122.docx%23_Toc499053179
file:///D:/Bugbear/School/GMU/Thesis/Thesis-Brearcliffe-20171122.docx%23_Toc499053180
file:///D:/Bugbear/School/GMU/Thesis/Thesis-Brearcliffe-20171122.docx%23_Toc499053181
file:///D:/Bugbear/School/GMU/Thesis/Thesis-Brearcliffe-20171122.docx%23_Toc499053182
file:///D:/Bugbear/School/GMU/Thesis/Thesis-Brearcliffe-20171122.docx%23_Toc499053183

ix

LIST OF FIGURES

Figure Page

Figure 1 - An Abstraction of an Entity-Base Model's Relationship to Hardware10

Figure 2 - Comparison of CPU to GPU Cores ...22

Figure 3 - GPGPU Threads, Blocks, Grids, and Memory ...26

Figure 4 - Speed Multiplier Results Using a GPGPU..29

Figure 5 - The Epiphany Architecture (64 cores shown) ...31

Figure 6 - Speed Multiplier Results Using an ASIC ...35

Figure 7 - How Spark Manages Work ...38

Figure 8 - ZIT HPC Optimization Parameter Sweep Results ..40

Figure 9 - ZIT HPC Optimization Analysis ...41

Figure 10 - HPC ZIT Speedup Results ..43

Figure 11 - Comparison of Three Model Results ..48

file:///D:/Bugbear/School/GMU/Thesis/Thesis-Brearcliffe-20171122.docx%23_Toc499053184
file:///D:/Bugbear/School/GMU/Thesis/Thesis-Brearcliffe-20171122.docx%23_Toc499053185
file:///D:/Bugbear/School/GMU/Thesis/Thesis-Brearcliffe-20171122.docx%23_Toc499053186
file:///D:/Bugbear/School/GMU/Thesis/Thesis-Brearcliffe-20171122.docx%23_Toc499053187
file:///D:/Bugbear/School/GMU/Thesis/Thesis-Brearcliffe-20171122.docx%23_Toc499053188
file:///D:/Bugbear/School/GMU/Thesis/Thesis-Brearcliffe-20171122.docx%23_Toc499053189
file:///D:/Bugbear/School/GMU/Thesis/Thesis-Brearcliffe-20171122.docx%23_Toc499053190
file:///D:/Bugbear/School/GMU/Thesis/Thesis-Brearcliffe-20171122.docx%23_Toc499053191
file:///D:/Bugbear/School/GMU/Thesis/Thesis-Brearcliffe-20171122.docx%23_Toc499053192
file:///D:/Bugbear/School/GMU/Thesis/Thesis-Brearcliffe-20171122.docx%23_Toc499053193
file:///D:/Bugbear/School/GMU/Thesis/Thesis-Brearcliffe-20171122.docx%23_Toc499053194

x

LIST OF ABBREVIATIONS

Agent-Based Model ... ABM

Application Programming Interface ... API

Application Specific Integrated Circuit ... ASIC

Cellular Automata .. CA

Central Processing Unit ... CPU

Computational Social Science ... CSS

Compute Unified Device Architecture .. CUDA

Entity-Based Model .. EBM

General Purpose Graphics Processing Unit ... GPGPU

GNU Compiler Collection .. GCC

GNU's Not Unix (A recursive acronym) .. GNU

Graphics Processing Unit .. GPU

High Performance Computing ... HPC

Individual-Based Model... IBM

Integrated Circuit .. IC

Logical Processing Element ... LPE

Multiple Instruction Multiple Data .. MIMD

Multiple Instruction Streams Single Data Stream .. MISD

Network on Chip .. NoC

NVIDIA CUDA Compiler ... NVCC

Reduced Instruction Set Computing .. RISC

Single Instruction Multiple Data ... SIMD

Single Instruction Stream Single Data Stream.. SISD

Single Program Multiple Data ... SPMD

System on Chip .. SOC

Yet Another Resource Negotiator .. YARN

Zero-Intelligence Traders.. ZIT

ABSTRACT

PARALLELIZATION OF ENTITY-BASED MODELS IN COMPUTATIONAL

SOCIAL SCIENCE: A HARDWARE PERSPECTIVE

Dale K. Brearcliffe, MAIS

George Mason University, 2017

Thesis Director: Dr. Andrew Crooks

The use of simulations by social scientists in exploring theories and hypotheses is well

documented. As computer systems have grown in capacity, so have interests of social

scientists in executing larger simulations. Social scientists often approach their

simulation design from the top down by selecting an Entity-Based Model (EBM)

framework from those that are readily available, thus limiting modeling capability to the

available frameworks. Ultimately, the framework is dependent upon what is at the

bottom, the hardware architecture that serves as the foundation of the computing system.

Parallel hardware architecture supports the simultaneous execution of a problem split into

multiple pieces. Thus, the problem is solved faster in parallel. In this thesis, a selection

of parallel hardware architectures is examined with a goal of providing support for

EBMs. The hardware's capability to support parallelization of EBMs is described and

contrasted. A simple EBM is tested to illustrate these capabilities and implementation

challenges specific to parallel hardware are explored. The results of this research offer

social scientists better informed choices than the sequential EBM frameworks that

currently exist. Matching the model to the correct supporting hardware will permit larger

scale problems to be examined and expands the range of models that a social scientist can

explore.

1

1. INTRODUCTION

1.1. Introduction

Computational Social Science (CSS) is an interdisciplinary (Meeth, 1978) field in

which mathematics is used computationally to explore social science questions and

answer social science problems. CSS encompasses a number of computational

approaches of which one is modeling (Cioffi-Revilla, 2014, p. 2). Agent-based models

(ABM) and individual-based models (IBM) are the predominant modeling systems used

by CSS. The description is used despite attempts to redefine CSS by others who seem

unfamiliar with the existing field. One such attempt is a brief 2009 article in Science

magazine where fifteen authors argue for the "emergence of a data-driven 'computational

social science'" without mentioning any form of agent-based modeling or acknowledging

previous definitions of CSS (Lazer, et al., 2009). A better description of CSS that

encompasses data science and scientific algorithms was provided by Benthall (2016) who

writes that scientific algorithms "implement statistical inference" and views

"computational social science as the application of scientific algorithms to understand

social phenomena." This view should be construed as including agent-based models as

scientific algorithms even though such models were not explicitly mentioned. Watts

(2013) is explicit in describing modeling as an integral part of CSS.

2

ABMs are a means to model issues involving people's decision-making or

behaviors whereas IBMs model issues generally focused on animals and plants. These

terms are often used interchangeably (Railsback & Grimm, 2012, pp. xi-xii). There is

sufficient overlap in tools, use and labeling between these model types that I will use the

phrase Entity-Based Models (EBM) to describe both (Cleary, Smith, Vassilevska, &

Jefferson, 2005). This use is not to be confused with "Equation-Based Modeling",

another definition of EBM, where such simulations are described by a set of equations

that are evaluated during model execution (Parunak, Savit, & Riolo, 1998). The use of

EBM in the context of this thesis is for the convenience of the reader and not an attempt

at redefinition.

CSS in application has focused on the social science aspect of this

interdisciplinary field. There are over a thousand papers and EBMs available from

academic sources such as the Journal of Artificial Societies and Social Simulation

(http://jasss.soc.surrey.ac.uk/), the OpenABM Consortium (https://www.openabm.org/)

and International Conference on Social Computing, Behavioral-Cultural Modeling, &

Prediction and Behavior Representation in Modeling and Simulation (http://sbp-

brims.org) describing results of the application of an EBM to a social problem or

exploring some other area. Noticeably less is the attention paid to the computer science

and engineering aspect of CSS. Yet without computers, social scientists might be forced,

as was Schelling (1969), to conduct simulations in a single dimension with pen and

paper. For CSS to be interdisciplinary, the contributions of computer science and

computer engineering must be embraced equally with social science. Rather than leave

3

this solely to the availability of computer scientists, social scientists in the CSS field

should be fully engaged with the development of the tools they rely on, instead of merely

users of existing EBM software frameworks that is commonly the case today.

Frameworks will be discussed in Section 2.3.

The use of EBMs in science has grown to embrace a number of fields to include,

but not limited to, computational biology (e.g. Walker, Hill, Wood, Smallwod, &

Southgate, 2004), public safety (e.g. Ren, Yang, & Jin, 2009), public health (e.g. Crooks

& Hailegiorgis, 2014), economics (e.g. Axtell, 2008), and ecology (e.g. Grimm &

Railsback, 2005). Unfortunately, EBMs are often restricted by the slow computing speed

and limited memory of the computer hardware they operate on requiring model alteration

(Wendel & Dibble, 2007). Some models compensate for this by limiting the number of

agents (e.g. Šalamon, 2011, p. 122; Wilensky & Rand, 2015, pp. 418-419), the space in

which the agents operate (e.g. Wilensky & Rand, 2015, pp. 418-419), or amount of time

in which computation occurs (e.g. Hogeweg & Hesper, 1983; Heijnen, Chappin, &

Nikolic, 2014). The increase in computing power as described by Moore's law (1965) has

enabled social scientists to scale their simulations in stride. Unfortunately, Moore's law

may not match the needs of social scientists as some may wish to model entire

populations (e.g. Axtell, 2016).

Hardware limitations, primarily heat dissipation, have prevented computer

processors from continuing their increase in computational power. In a bid to overcome

these limitations, computer hardware engineers have created processors with multiple

4

processing cores (multi-core central processing units (CPU)), general purpose graphics

processing units (GPGPU), specialized processors (application specific integrated circuit

(ASIC) system on chip (SOC) coprocessors), and networked computing (homogeneous

and heterogeneous clusters). These architectural advances have led to an era of "Big

Data" with the expectation that large amounts of data may be processed. The large data

boundary, whose processing exceeds either computational or temporal constraints, is

monotonically increasing. These advances offer the possibility of EBMs with software

elements that operate simultaneously, in parallel to each other. Existing EBM software

application frameworks such as NetLogo (Wilensky, 1999), intended for the single

(sequential) processor, were not designed to take advantage of this type of hardware

architecture. The demands by some social scientists for large-scale simulations have

outpaced the computational power available to these sequential frameworks (e.g. Hayes,

et al., 2014; Xiong, 2015). Efforts in creating frameworks that take advantage of these

parallel processing architectures, such as Flexible Large-scale Agent Modelling

Environment (FLAME) for heterogeneous computing (Holcombe, Coakley, &

Smallwood, 2006) or GPGPU based models (Lysenko & D’Souza, 2008), have

fragmented the approach to EBMs across these environments. In some cases, it may be

necessary to include a computer scientist as part of the modeling effort.

Social scientists usually approach their simulation design from the top down by

selecting an EBM framework from those that are readily available such as NetLogo. This

approach limits the social scientist to the capability of the chosen framework. Ultimately,

the framework is dependent upon what is at the bottom, the hardware that serves as the

5

foundation of the computing system. If a sequential framework such as NetLogo is

chosen, it will fail to take full advantage of a modern hardware architecture foundation.

1.2. Research Questions

In this thesis, I approach the issue from the bottom up by examining a selection of

parallel hardware architectures from the perspective of providing support for EBMs. This

thesis attempts to answer three research questions: 1) Does the underlying hardware play

a role in the social scientist's capability to create large-scale models? 2) If so, does the

hardware change the approach and skills needed for modeling? 3) Is it worth the effort?

1.3. Thesis Outline

The next chapter will provide background information on it EBMs, why parallel

models are needed, some existing sequential EBM frameworks, hardware architecture

categories, and some recent efforts to parallelize EBM. Chapter 3 describes the general

methodology and the EBM selected for experimentation. Applied parallelism is the focus

of Chapter 4. First, a description of a previous approach using a multi-core CPU is

described. This is followed by a description of the experiment on each of the GPGPU,

ASIC, and High Performance Computing (HPC) architectures. Chapter Error!

Reference source not found. discusses model verification and validation. Finally,

Chapter 6 provides a summary of the results and conclusion, along with areas of future

work.

6

2. BACKGROUND

2.1. Entity-Based Models

The label Entity-Based Model (EBM) is used as an amalgamation of agent-based

models (ABM) and individual-based models (IBM) (Cleary, Smith, Vassilevska, &

Jefferson, 2005). ABMs are often used to model people (agents) operating in a simulated

environment using a small number of rules to guide the actions of the agents and changes

to the environment. Within this in silico laboratory, societies emerge whose interactions

can be studied over time and by varying the conditions in which they exist. Epstein and

Axtell (1997) described this as "generative social science" because it encompasses neither

deductive nor inductive reasoning. Instead, a new scientific process, the "artificial

society" is used as an instrument of exploration. In a similar fashion, IBMs are generally

used to model animals and plants in a simulated ecological environment. Classic

mathematical ecology was based on the idea of the homogeneous averaged individual.

IBMs introduced heterogeneous individuals with complex lifecycles and individual

changing resources. Rather than showing mathematically stable ecological systems,

IBMs permit the study of local changes in population and resources from which the

ecological system as a whole is an emergent property (Uchmański & Grimm, 1996).

The acceptance of EBMs in social science has had a number of impacts. EBMs as

computational models can be viewed as the manifestation of a "third way" of expressing

7

the ideas of social science, going beyond natural language and mathematics (Ostrom,

1988; Gilbert & Terna, 2000). As an investigative science tool, it has removed some of

the restrictions imposed by methods that used strict mathematical modeling and proofs

(Bankes, 2002). EBMs can be used to explore and sometimes explain emergent behavior

that occurs when the microscopic behavior of local agent interactions create macroscopic

patterns across the entire artificial society (Epstein, 1999). Here "emergent" is used as a

placeholder to acknowledge a process that cannot currently be explained but one day

might be. Finally, EBMs permit social theories to be tested and experimented on in a

controlled environment (Macy & Willer, 2002). These models can be run hundreds of

times or more before analyzing the collective results.

In this thesis, a third type of modeling approach, the cellular automata (CA), is

regarded as a limited type of EBM and are thus subsumed by them. CAs are one of the

simplest types of social simulation models (Cioffi-Revilla, 2014, pp. 16-17, 231-232).

The key difference is that there are no agents in a CA to move within the environment,

although there can be an illusion of movement as stationary regions react to changes in

their surrounding environment (Gardner, 1970). Not all EBMs have agents that move and

the difference between CA and EBMs become less distinct as the two modeling

approaches are combined in a single model (Crooks, 2017).

2.2. The Need for Parallelization

Herbert Simon (1955; 1996, p. 166) described "bounded rationality" as a limit on

the ability of an adaptive system to consider all choices in a complex environment. The

8

adaptive system he referred to was a person. In a similar manner, computational

limitations create a bounded rationality for an EBM software framework when the

desired number of agents, the size of the environment, or the complexity of calculations

cannot be concluded within a desired temporal period (Papadimitriou & Yannakakis,

1994; Tsang & Martinez-Jaramillo, 2004).

Computer programs have historically been designed to execute sequentially on a

single computing device. Computational limitations can affect the ability of a social

scientist to create the simulation needed for a social issue to be fully explored. For

example in one financial simulation, the authors were able to reproduce a model that

contained liquidity inconsistencies attributed to its one-thirty-second scale, but were still

limited to a one-quarter scale (Hayes, et al., 2014). In a livestock EBM, the agents needed

to be made partially homogeneous by clustering them into heterogeneous, representative

herds (Bradhurst, Roche, East, Kwan, & Garner, 2016). Geographic information systems

can capture spatial data at a level of resolution that exceeds the computational ability to

model at the same resolution (Crooks, Castle, & Batty, 2008). Computational complexity

changes from tractable to intractable when agent and environment interactions move

from a polynomial scale to an exponential scale (Cioffi-Revilla, 2014, p. 64).

Bounded rationality can mitigate computational limitations by decreasing the

number of interactions between agents and their environment. Doing so decreases the

number of calculations and the amount of time needed to complete the model. For large-

scale models, this may not be enough. Increasing the number of calculations that can take

9

place during each time step of the model can increase the model run time. For these

large-scale models, parallelization offers a potential path to success.

2.3. Frameworks for Entity-Based Models

An EBM's existence is predicated on more than just the hardware that serves as

its foundation as shown in Figure 1. Other intermediate layers also support the EBM and

one of the more important in this stack is the EBM framework. These frameworks fall

into two types: Either a general framework useful for creating a wide range of

simulations or a framework designed specifically for a single model. Examples of general

EBM frameworks are NetLogo, Swarm (Swarm Development Group, 1999), Repast

(North, et al., 2013) and Multi-Agent Simulator Of Neighborhoods (MASON) (Luke,

Cioffi-Revilla, Panait, Sullivan, & Balan, 2005). Designed EMB frameworks are specific

to the problem a social scientist is exploring and so can be as numerous as there are social

scientists. The designed EBM is built using a general-purpose programming language in

lieu of a general EBM framework. An example of this is the Sugarscape model, created

with the programming languages Object Pascal and C (Axtell, Axelrod, Epstein, &

Cohen, 1996). Whether general or designed, each EBM framework is based upon one of

many available general programming languages. While the EBM framework is the layer

most visible to the social scientist, it is not the intention to study these frameworks but

merely to acknowledge them for context. Section 2.5 provides use cases of designed and

general frameworks.

10

2.4. Hardware Categories

 There are a number of approaches to achieving parallelization. I have categorized

these approaches from a hardware perspective based on the multi-core central processing

unit (CPU), graphic processing unit (GPU) also referred to as a general purpose graphic

processing unit (GPGPU), application specific integrated circuit (ASIC) coprocessors,

homogeneous clusters, and heterogeneous clusters as shown in Table 1. Although these

categories are a generalization and could be sub-categorized, they are considered

sufficient for this thesis.

Figure 1 - An Abstraction of an Entity-Base Model's Relationship to Hardware

11

The first category relies on modern personal computers (servers, desktops, and

laptops) that have central processing units with multiple logical processing elements

(LPE) commonly referred to as cores. While servers are not commonly thought of as a

personal computer, there are but small differences between them and the hardware

architecture of desktops and laptops. The LPE label is used to differentiate from a

physical processing element that may contain one or more logical elements. Typically,

there can be two logical processing elements per physical element often referred to as

hyper-threading. Software applications count the number of LPEs when determining the

number of available cores. Also, note that multiple physical processing elements can be

found within a single integrated circuit (IC). This IC can also be referred to as a CPU or

Table 1 - Hardware Categories

Hardware Category Description

Multi-Core Central Processing Unit A CPU with more than one logical processing

element.

Graphic Processing Unit Composed of thousands of logical processing

elements. These LPEs do not communicate

with each other, are simpler, and less capable

individually than those found in CPUs.

Application Specific Integrated Circuit Purposely designed for some function. Can

contain multiple highly specialized RISC

cores that operate independently or

collectively on internal NoCs.

Homogeneous Computing Nodes Nodes of similarly designed and configured

multi-core computers physically located

together and optimized for high-speed

communication.

Heterogeneous Computing Nodes A distributed network of nodes different types

of computer hardware and operating systems.

They can be geographically distributed,

communicating across the Internet.

12

socket. The number of LPEs in a CPU is currently about ten to twenty for desktops and

laptops, or near one hundred for a server. If past practices are a prediction of the future,

hardware companies will increase the number of LPEs. An EBM can be divided among

these LPEs so that its sub-processes execute in parallel to each other rather than

sequentially (Herlihy & Shavit, 2012). A second category is the addition of one or more

graphic processing units to the computer. Each GPU is composed of thousands of LPEs.

These LPEs do not communicate with each other, are simpler, and less capable

individually than those found in CPUs, but the total number of them, operating in parallel

to each other, allow for a large increase in computing power per unit of time (Owens, et

al., 2008; Dematte & Prandi, 2010). A third category is the use of ASIC coprocessors

with a CPU. These are purposely designed to implement a function in hardware. They

can contain multiple highly specialized reduced instruction set computing (RISC) cores

that operate independently or collectively on their own internal network on chip (NoC)

optimized for efficient high-speed communication (Richie, Ross, Park, & Shires, 2015;

Olofsson, 2016). Section 2.5 provides some examples of EBMs using these architectures.

These first three categories are often attained locally on a single computer that can

be directly controlled by the social scientist. The next two categories could require the

social scientist to rely on systems outside their direct control. The fourth category is a

network of homogeneous computing nodes. These nodes are often multi-core computers

in of themselves that are physically located together and optimized for high-speed

communication. Each node has a similar hardware configuration and identical operating

systems (Geist & Reed, 2015). The fifth and final category is a distributed network of

13

heterogeneous computing nodes. These nodes are each treated as a single computing

entity where each can be a different type of computer hardware and operating system.

They are geographically distributed, communicating across the Internet (Anderson,

2004). These categories are not strictly delimited and can be blended together creating a

hybrid system. In fact, all personal computers must have a CPU. The addition of GPU or

ASIC hardware is optional. Similarly, a homogeneous computing network is usually

composed of computing nodes with multi-core CPUs. A heterogeneous computing

network can be composed of any personal computer configuration of CPUs, GPUs and

ASIC.

2.5. Recent Efforts to Parallelize EBMs or Conduct Experiments

Social scientists have created parallel simulations and conducted case studies to

experiment with the feasibility of parallel EBMs. One of the most obvious ways to

accomplish parallelization is to take advantage of the multi-core CPU. This resource is

already on the social scientist's computer and under their direct control. A predator-prey

model implemented by Fachada, Lopes, Martins, and Rosa (2016) on a computer with

twelve LPEs obtained a speed increase forty times greater than its single LPE equivalent.

A price in increased programming complexity was paid, however, as the single LPE

version used NetLogo, a simple EBM framework used to teach modeling, while the

multi-core model was created in the general-purpose computing language Java. Gong,

Tang, Bennett, and Thill (2012) showed spatial EBMs, those using a two or more

dimensional grid on which agents interact, benefited from a speed increase as more cores

14

are added. However when the spatial size was increased along with the cores, the speed

multiplier was diminished, demonstrating a lack of efficiency.

GPUs can be added to the social scientist's computer if it does not already have

one. These units add thousands of LPEs to the system, leading some to label them many-

core processors, but at the cost of greater programming difficulty and reduced capability

for each GPU core. Leinweber, et al. (2014) used a GPU for an EBM of yeast

flocculation that resulted in a speed increase of 736 times over the single LPE version for

20,000 agents. The speed increase was sufficient to permit real-time observation of the

model in three dimensions. Another three dimensional visualization by Husselmann and

Hawick (2011) was achieved in modeling the flocking behavior of "Boids." Although

Reynolds' (1987) original EBM was only two dimensional, the GPUs allowed for the

third dimension, an increase in the number of agents, and an extension to observe

multiple competing flocks within the same simulation. Several GPU boards were

compared with the best results showing about 33,000 agents could be processed in a

single time step of 0.06 seconds.

Laville, Mazouzi, Lang, Philippe, and Marilleau (2013) created an EBM of soil

science that combined the CPU and GPU. By assigning complicated agents to the CPU

and simple agents or the spatial environment to the GPU, each type of processing unit

was able to maximize its unique capability. The EBM was incrementally modified from

its original sequential algorithm to one that could be supported by the CPU and GPU. In

the ultimate configuration for a hybrid CPU/GPU, some of the newest processors have

15

the CPU and GPU on the same chip. This promises tighter integration and sharing of

memory resources. Wang, Rubin, Wu, and Yalamanchili (2013) used one of these new

processors for an EBM traffic simulation of two million vehicles. They showed a speed

increase of thirty-four times compared to a CPU alone.

No EBMs using an ASIC coprocessor have been found to be published based on

an extensive literature review search. However, in a case study of a CA model using an

ASIC coprocessor, Aaberge (2004) achieved a speed multiplier of sixteen times

compared to using only the main CPU. It was noted that the coprocessor was capable of

multiple-instruction, multiple-data (MIMD) and single-instruction, multiple-data (SIMD)

tasks. MIMD and SIMD are hardware techniques useful for parallelizing data processing

as categorized by Flynn (1966).

HPC clusters offer the possibility of dramatic increases in the scale of EBMs, but

not without the difficulty of retooling models to take full advantage of the hardware

(Dongarra, Gannon, Fox, & Kennedy, 2007). Kim, Tsou, and Feng (2015) used a HPC

cluster of homogeneous computers to create the classic Schelling (1971) segregation

model basing it on the geography and household data of San Diego, California. For the

one million households and housing units, the EBM achieved almost a 180 times speed

multiplier across 112 LPEs in the computer cluster. Another classic EBM, Sugarscape

(Epstein & Axtell, 1996), was also parallelized in a homogeneous HPC cluster. Shook,

Wang, and Tang (2013) scaled the Sugarscape model from sixteen LPEs to 2,048 LPEs

for a speed multiplier of almost 1,000 times. They noted that some executions had to be

16

considered outliers and removed from the results dataset. This was attributed to noise

caused by sharing the HPC with other users, an effect of the social scientist not having

full control over the computing resource.

Heterogeneous HPCs can have a worldwide geographic distribution of dissimilar

computing resources. Yang, Ono, Kurahashi, Jiang, and Terano (2015) showed this

dissimilarity caused additional challenges when measuring model speed multiplier with

any results necessarily normalized to the slowest computer in the grid. The slowest

computer can be different for each model execution. EBM experiments showed a near

linear increase in speed as the number of computers in the grid increased from one to one

hundred. The D-MASON (Cordasco, et al., 2012) framework is a distributed, parallel

version of the single computer EBM framework MASON. In tests contrasting the two

frameworks, some models that could not be executed using MASON because of

hardware limitations could be solved using D-MASON (Cordasco, et al., 2013).

These five categories shown in Table 1 of available hardware demonstrate a

fragmented approach to parallelization of EBMs. Each of the hardware architectures have

strengths and weaknesses that indirectly affect the methods that a social scientist must

employ to reproduce, but not replicate (Drummond, 2009), an existing model or create a

new one. On the positive side, this fragmentation is to be expected and commended.

Social scientists are exploring all routes toward a collective goal of creating parallel

models. On the negative side, the social scientist can waste time and money by choosing

a parallelization strategy that does not well fit the model they are trying to create. For

17

instance, an EBM that requires extensive communication between agents might not fare

well on heterogeneous architecture with systems distributed around the world.

18

3. GENERAL METHODOLOGY

3.1. Measurable Results

Experiments with different hardware architectures are detailed in Chapter 4. One

measurable result from each experiment is the model speed multiplier. Speed multiplier

compares the time it takes a model to complete using a single LPE to completion times

using multiple LPEs. The number of agents is also changed to show the impact of

scaling. Agent scaling also affects speed multiplier. This measure is useful for

determining the significance of the hardware architecture in solving the social scientist's

computational resource limitation. Readers are reminded of the layers shown in Figure 1

that exist above the hardware. These other layers may also have an effect on speed and

could limit speed comparisons between hardware architectures.

3.2. Experiment Structure

Each hardware experiment in Chapter 4 is first introduced and followed by a brief

hardware description and reasons why it was selected. The operating environment and

programming language is then depicted. The approach used to implement the EBM for

the hardware is described. Finally, the experiment, results, and any recommendations are

provided.

19

3.3. Programming Language Selection

Several factors were considered regarding the selection of the programming

language used for each hardware architecture. EBM frameworks were rejected because

there is no assurance that the framework developers had taken full advantage of the

underlying hardware. These developers must make design decisions regarding the

anticipated general use of the framework that could be inconsistent with the needs of the

social scientist's simulation. Programming languages are closer to the hardware and

makes it easier to see how the hardware created or solved EBM challenges. The

programming language was selected based on general availability, the EBM that was to

be implemented, and the hardware architecture. This process aided in answering research

question three, "Is it worth it?"

3.4. The Zero-Intelligence Traders Entity-Based Model in Parallel

The Zero-Intelligence Traders (ZIT) model (Gode & Sunder, 1993) is used for

parallel EBM testing. It simulates a market with buyers and sellers who submit random

offers and bid for a single type of a notional item. These traders have no means to

observe other traders and have no memory of the past market. They also use no learning

methodologies. Thus, they are deemed to have no "intelligence." Traders have pre-set

randomly selected limits and will not conduct a trade that violates those limits. Those

who have yet to conduct a trade are randomly matched. If a seller's minimum price and

buyer's maximum price limits can be met, a randomly selected value between those limits

is selected as a negotiated price. The trades are constrained so that each results in a profit.

Despite the random decision-making, the ZIT agents are able to achieve market

20

efficiency. This led to the conclusion by Gode and Sunder (1993) that it is market

institutions, and not traders, that have the greatest effect.

The simulation can be implemented sequentially by iterating through the list of

buyers and sellers until a predetermined number of trades t have occurred. Parallelizing

the model entails dividing the buyers and sellers into n groups (where n is the number of

parallel processes), passing access to the data for each group to n computational units,

executing t/n trades at each computational unit, and aggregating and summarizing the

results as shown in Table 2. There is no need for a groups of buyers and sellers to

communicate with buyers and sellers in other groups during the trade decisions, thus each

group is independent.

Table 2 - Pseudo Code Parallelization of the ZIT Model

INSTANTIATE and INITIALIZE BUYER, SELLER, DATA and

THREAD objects;

Assign sub-populations of BUYERS and SELLERS to THREADS;

FORK all THREADS;

FOR each THREAD, REPEAT:

 - Randomly activate 1 BUYER agent + 1 SELLER agent:

 - - BUYER proposes a BID price;

 - - SELLER proposes an ASK price;

 - - IF (BID > ASK) THEN

 - - - Pick EXECUTION price between BID and ASK;

 - - - INCREMENT BUYER holdings;

 - - - DECREMENT SELLER holdings;

 - - - Collect DATA on the trade;

 - INCREMENT the attempted number of trades;

 - END when maximum trade attempts exceeded;

JOIN all THREADS;

Collect final DATA;

(Source: McCabe, et al., 2016)

21

4. APPLIED PARALLELISM

4.1. Multi-Core Central Processing Unit

Parallelization of the ZIT model on a multi-core CPU in the C programming

language is accomplished by using a fork/join method. ZIT is considered an

“embarrassingly parallel” problem because each trade transaction decision is independent

of any other decision. This lack of communication makes it easy to split the possible

transactions as blocks among different threads. These threads are assigned (forked) to the

individual CPUs where the results of each block are determined before aggregating the

results (joined) on the initial thread. Scaling is accomplished by increasing the number of

assigned threads until some upper limit is reached (McCabe, et al., 2016).

The multi-core version of the ZIT EBM is attributed to source code made

available by Robert Axtell (2011). This code was the basis for all experiments in this

chapter.

4.2. Graphic Processing Unit

4.2.1. Introduction

 CPUs measure their cores in the ones or tens, while GPUs, as depicted in

Figure 2, do so in the thousands. The CPU is designed for complex sequential

operations against small chunks of data. GPUs can perform simple parallel

22

operations against comparatively large amounts of data (NVIDIA Corporation,

2017d). GPUs are dependent on the presence of a GPU. The CPU has no such

dependency on the GPU. The simplicity of the GPU aligns well with the idea of

the EBM that depends on a few, simple rules for its agents coupled with a very

large number of agents or geographic space that must be processed during each

step of a model.

There is more than one manufacturer of GPGPUs with NVIDIA

(http://www.nvidia.com) and AMD (https://www.amd.com) as the most widely

known. Terminology specific to the NVIDIA GPGPU is used in this thesis. The

concepts, however, are the same in other manufacturer's implementations.

Figure 2 - Comparison of CPU to GPU Cores

(Source: NVIDIA Corporation, 2017d)

23

4.2.2. Hardware

 The hardware platform selected for this experiment is the NVIDIA Jetson

Tegra X1 (TX1) Developer Kit. Relevant specifications for the CPU support and

the GPU are in Table 3. This platform was intended as a complete environment

for software and hardware developers, particularly those needing high

performance computations (NVIDIA Corporation, 2017b). The GPU is embedded

in its own board that plugs into the main board.

4.2.3. Justification

 This hardware provided a clean environment bereft of additional

applications that could affect available system resources. Access was

accomplished via a command line interface, eliminating the overhead of a

graphical user interface (GUI).

Table 3 - GPU Hardware

 Quad-core ARM® Cortex®-A57

MPCore Processor

 4 GB LPDDR4 Memory

 16 GB eMMC 5.1 Flash Storage

 10/100/1000BASE-T Ethernet

 5 MP Fixed Focus MIPI CSI Camera

 NVIDIA Maxwell™ GPU with 256

NVIDIA® CUDA® Cores

(Source: NVIDIA Corporation, 2017b)

24

4.2.4. Operating System and Environment

 The TX1 was pre-installed with the Linux operating system, Ubuntu

distribution release 14.04 LTS. JetPack 2.2 for L4T was used to load the

additional software necessary for interacting with the GPU.

4.2.5. Programming Language

 Programming for the NVIDIA GPU hardware was accomplished through

the Compute Unified Device Architecture (CUDA) 7.0 computing platform. The

CUDA environment provides a means to transfer data between the CPU main

board (host) and the GPU. It also manages the transfer and execution of programs

from the host to the GPU. CUDA operates as either an extension of languages

such as C, C++, and FORTRAN or as an Application Programming Interface

(API) for other languages such as Python (NVIDIA Corporation, 2017a; NVIDIA

Corporation, 2017c).

 For this experiment, the host language used is C under GNU's Not Unix

(GNU) Compiler Collection (GCC) (https://gcc.gnu.org/) version 4.8.4. The

acronym GNU is a recursive acronym. The code was compiled using NVIDIA's

CUDA Compiler (NVCC).

4.2.6. Approach

 Programming a GPU requires a different coding approach than that for a

CPU only. The GPU is reliant on the CPU no matter which programming

language is chosen. Data must be prepared in the CPU prior to invoking the GPU.

25

Once prepared, the data is moved to the GPU along with a set of programming

instructions that will execute against the data. Upon completion, the data results

are moved back to the CPU where additional processing can occur. This

communication with the GPU is accomplished using CUDA kernels. These

sections of code use a triple angle bracket syntax <<< >>> that notifies the CUDA

compiler it is a GPU function call.

 The triple angle bracket syntax plays another important role. Contained

within the brackets is information informing the GPU of the number of CUDA

cores to allocate to the task. Typically, two values representing blocks and

threads are provided while a third value for grids is optional. Figure 3 shows the

relationships between these resources. Unlike the CPU where the thread is a

software process, the GPU thread is a single CUDA core, a hardware process.

CUDA GPUs are best executed in blocks of 32 threads referred to as warps. This

is considered a best practice methodology (NVIDIA Corporation, 2012).

Consequently, thread blocks should always be in multiples of 32. The block

value indicates the number of thread blocks to execute, each of which will execute

a number of threads that have been allocated. Each GPU model has an upper

limit for the number of threads that can execute within a single thread block. It is

most efficient to use the maximum number of threads available within a thread

block while never exceeding the upper limit, 1,024 for this GPU. Violating the

upper limit will cause the code to fail (NVIDIA Corporation, 2017f). A CUDA

command is available to discover properties unique to each GPU model.

26

 One final note is the generation of pseudo random numbers. EBMs often

use these numbers to explore a model's decision space during multiple runs. The

GPU cannot make host system calls to generate pseudo random numbers.

Consequently, a separate CUDA pseudo random number generator must be used

on the GPU. This can result in two different pseudo random number generators

within the same model.

Figure 3 - GPGPU Threads, Blocks, Grids, and Memory

(Source: NVIDIA Corporation, 2017e)

27

4.2.7. Experiment and Results

 The GPU code was tested via a parameter sweep varying both the number

of agents and the number of desired threads. The number of agents was tested

from 10
3
 through 10

6
 by factor of ten increments against the number of threads

from 10
0

to 10
6
, also by factor of 10 increments. The number of trades was

always 10
2
 greater than the number of agents and the maximum buyer and seller

values were sent to 30. Table 4 shows the mean and standard deviation in

milliseconds of 30 runs for each valid combination of parameters. Six parameter

combinations were invalid, as the number of agents cannot exceed the number of

threads. The measured times are only for the GPU kernel that calculated trades.

Sequential CPU time and other preparations were not measured.

Table 4 - GPGPU ZIT Results

 Mean in Milliseconds Standard Deviation in Milliseconds

Threads 10^6

Agents

 10^5

Agents

10^4

Agents

10^3

Agents

 10^6

Agents

 10^5

Agents

10^4

Agents

10^3

Agents

 10^0 158,001 50,929 5,916 306 21,678 13,643 2,432 53

 10^1 56,655 9,851 756 45 10,106 2,598 169 19

 10^2 33,566 2,333 184 26 21,664 374 26 12

 10^3 17,353 1,530 142 20 5,235 129 24 8

 10^4 9,430 789 66 --- 3,483 35 14 ---

 10^5 8,588 702 --- --- 3,378 2 --- ---

 10^6 4,806 --- --- --- 2,461 --- --- ---

28

 The model used the best practice methodology of running threads in warp

sized blocks as described in Section 4.2.6. Consequently, the actual number of

threads used was sometimes reduced to the nearest warp multiple that did not

exceed the desired number of threads. Thus 10
2
, 10

3
, and 10

4
 desired threads

were reduced to 96, 992, and 9,984 respectively. This best practice was violated

for desired threads of 10
0
 and 10

1
 as the result would have been zero threads.

Instead, the desired number of threads was used. The model ensured the number

of threads per block did not exceed the upper limit by adjusting the number of

thread blocks to accommodate the additional threads. In doing so, the model also

ensured the number of threads per block was the same for all thread blocks.

While selecting desired threads in factors of 10 made near maximum use of

available threads per block, intermediate values would use smaller values when

favoring an even distribution of threads across all thread blocks.

 The speed multiplier, relative to a single thread, for each number of

agents from Table 4 is shown in Figure 4. Adding additional threads

monotonically decreased computation time resulting in a relative speed increase.

Allocating a single thread, and therefore a single CUDA core, for each agent's

computation was consistently the best strategy.

29

4.2.8. Recommendation

 Coding for a GPGPU requires a willingness on the part of the social

scientist to acquire a deep understanding of the hardware. Future CUDA

platforms will no doubt continue to add useful layers between the hardware and

the programming language, possibly at the expense of additional execution time.

For example, an addition to the CUDA 6.0 platform, Unified Memory, eliminated

the need to explicitly declare separate GPU and CPU memory structures and

explicitly move data between them. However, Unified Memory takes slightly

longer to execute (NVIDIA Corporation, 2013). Training for CUDA platforms is

readily available at NVIDIA, free online courses, and academic institutions. The

Figure 4 - Speed Multiplier Results Using a GPGPU

0

10

20

30

40

50

60

70

80

90

100

 10^0 10^1 10^2 (96) 10^3 (992) 10^4 (9,984) 10^5 10^6

S
p

ee
d

 M
u

lt
ip

li
er

Threads (Actual Threads)

Relative Speed Increase by Thread and Agent

10^3 Agents 10^4 Agents 10^5 Agents 10^6 Agents

30

benefit to the social scientist is a capability to conduct large-scale experiments

with commonly available and low cost equipment. (The TX1 used in this

experiment was acquired from NVIDIA for $300 at a 50% education discount.)

The CUDA platform is capable of using multiple GPU boards attached to the

same CPU host, adding additional computing power.

4.3. Application Specific Integrated Circuit

4.3.1. Introduction

Application Specific Integrated Circuits (ASIC) are purpose designed

to implement some function in hardware, often as an accelerator for some process.

Examples of this include Digital Signal Processing (e.g. McCanny, Ridge, Hu, &

Hunter, 1997), Software Defined Networks (e.g. Zaho, Li, Han, Sun, & Huang,

2014), and Neural Networks (e.g. Nurvitadhi, et al., 2016). Similar to the GPU,

the ASIC is dependent on a CPU host. Only some ASICs are useful for

implementing an EBM. The Adapteva's Epiphany III (Adapteva, 2013) is such an

ASIC as it is designed for general parallel processing.

4.3.2. Hardware

The Epiphany III has sixteen independently operating RISC computing

nodes (cores) on an internal mesh network. This network on chip (NoC) is

capable of simultaneous read, on chip write, and off chip write operations as

shown in Figure 5. Each core has its own 32 KB memory plus access to 512 MB

memory shared by all nodes. The design of this ASIC supports Single

31

Instruction Multiple Data (SIMD), Single Program Multiple Data (SPMD),

and Multiple Instruction Multiple Data (MIMD) among others (Adapteva,

2013).

The Epiphany is implemented as a co-processor to a CPU (itself a RISC

ARM 9 processor) on a single Adapteva Parallella board. While this negates

compatibility concerns between the CPU host and the ASIC, it limits hardware

scalability of easily adding another board to a CPU host. The Parallella has 1 GB

of memory, half of which is the shared memory for the Epiphany.

Figure 5 - The Epiphany Architecture (64 cores shown)

(Source: Adapteva, 2013)

32

4.3.3. Justification

The single board Parallella offers an integrated CPU/ASIC environment

designed for experimenting with SPMD. All computations can occur on the

Epiphany while the CPU is in a support role. Access was accomplished via a

command line interface eliminating GUI overhead concerns.

4.3.4. Operating System and Environment

The Parallella provides an Ubuntu distribution of the Linux operating

system Release 14.04. Interactions between the CPU host and the ASIC are

implemented through libraries and applications that do not interfere with the host

operating system.

4.3.5. Programming Language

The ZIT model is implemented in Epiphany BASIC (eBASIC version 0.1)

(Brown, 2015). eBASIC is a dialect of the BASIC computer programming

language, a procedural language developed in the mid-1960s (Ralston & Meek,

1976). Additional commands specific to the Parallella operating environment and

parallel processing were added by Brown to this subset of the BASIC language.

4.3.6. Approach

An SPMD approach is used to parallelize ZIT. The CPU host distributes

identical copies of the eBASIC ZIT model to each of the sixteen cores on the

Epiphany III (SPMD). An area of shared memory, accessible to all cores is

initialized with seller and buyer data. Each distributed program can determine its

33

unique core identification number and uses this, along with the maximum number

of cores, to determine which section of shared data is unique to the core. Each

core executes its code independently until all trades are complete. One core,

selected as a master, has the additional task of collecting results from the other

cores and calculating the overall results. Used in this way, the ASIC cores are

functionally identical to software threads.

The SPMD approach minimizes changes to the original model. Porting the

ZIT model from the C programming language to eBASIC actually simplified the

model, as there was no reason to create a large array of buyers and sellers that was

divided and processed via a fork/join process. Instead, each eBASIC copy used its

own data set where the array size was simply limited to '1/maximum-number-of-

cores'. Because of limited memory, however, it was necessary for the data to be

placed in the 515 KB shared memory rather than local core memory. The

program itself, at 1,724 bytes, easily fit on each core.

4.3.7. Experiment and Results

The parameter sweep for the ASIC code included the number of agents

and cores. The number of cores was incremented from 1 to 16 in steps of one

while the number of agents was tested from 10
3
 through 10

5
 by factor of ten

increments. A test of 10
6
 agents could not be performed given memory

limitations. The number of trades was set to 10
2
 greater than the number of

agents and maximum buyer and seller values was 30. Table 5 shows the results of

34

30 runs for each parameter combination. Moving data between shared in core

memory, although transparent to the program, negatively impacted performance.

Differences in relative speed multiplier for different number of cores are shown

in Figure 6. The maximum speed multiplier for this ASIC is an order of

magnitude smaller than for the GPGPU. Despite an increase in the number of

agents, the speed multiplier remains nearly identical for all cores with a value of

8.65-8.69 for 16 cores.

Table 5 - ASIC ZIT Results

 Mean in Milliseconds Standard Deviation in Milliseconds

Cores 10^5

Agents

10^4

Agents

10^3

Agents

10^5

Agents

10^4

Agents

10^3

Agents

1 986,110 98,693 9,874 437 81 7

2 494,684 49,554 4,962 390 36 5

3 332,037 33,231 3,328 265 28 3

4 251,713 25,184 2,525 188 20 2

5 206,530 20,660 2,070 140 15 3

6 176,471 17,658 1,767 105 13 2

7 155,705 15,580 1,561 87 7 2

8 140,431 14,056 1,408 89 14 1

9 130,789 13,091 1,316 84 5 1

10 123,955 12,404 1,246 157 12 1

11 119,898 11,995 1,206 117 18 3

12 117,324 11,741 1,178 75 11 2

13 116,556 11,668 1,172 107 13 1

14 116,121 11,618 1,166 71 9 1

15 115,007 11,509 1,161 46 5 15

16 113,511 11,359 1,142 115 17 5

35

4.3.8. Recommendation

ASIC coding will vary depending upon the type of accelerator. However,

any general parallel processing accelerator that permits SPMD or MPMD has

potential to assist the social scientist with EBM development. In particular, an

ASIC that reliably scales across agent size would be a stable predictor for system

design. The low cost of the Parallella hardware ($100) is ideal for creating a

computing cluster provided the problem's data can be broken into small chunks.

Future research could include daisy chaining multiple boards together extending

the number of available cores. Additionally, each Parallella host CPU and its

operating system can communicate via 1 GB Ethernet. This creates an opportunity

for real-time model monitoring.

Figure 6 - Speed Multiplier Results Using an ASIC

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
p

ee
d

 M
u

lt
ip

li
er

Cores

Relative Speed Increase by Core and Agent

10^3 Agents 10^4 Agents 10^5 Agents

36

4.4. High Performance Computing Cluster

4.4.1. Introduction

A High Performance Computing (HPC) cluster provides a scalable

environment for computations on large amounts of data that is distributed across

multiple data nodes.

4.4.2. Hardware

A set of homogeneous data nodes store the distributed data, each of which

also provides the necessary computing resources. These data nodes, along with

some additional computers for resource management, are commodity systems.

Commodity systems are general-purpose hardware typically appropriate for

servers. The HPC cluster used for this experiment consists of 11 data nodes.

Each node has 24 LPEs (hyper-threaded from 12 physical CPUs in a single IC)

and 64 GB of memory.

4.4.3. Justification

Scalability is the primary justification for experimenting with this

hardware. Several commercial companies offer the ability to rent a HPC of

almost any size for short time periods. Thus, there is the potential for the social

scientist to engage in very large scale EBM simulations. The hardware used in

this experiment was a low use development system available at no cost. Access

was via command line eliminating any GUI overhead.

37

4.4.4. Operating System and Environment

The Cloudera 5.x platform (http://www.cloudera.com/) running on top of

Linux was used as the computing environment. Cloudera uses a Hadoop

distributed file system. This system emphasizes keeping data at rest since data

movement takes time. This is accomplished by breaking the data into chunks,

replicating each chunk so there are three identical copies, and distributing all

chunks across the data nodes. Once placed, the data does not move, instead

computing tasks are sent to the data. Cloudera uses the resource manager YARN

to distribute work across the cluster and then collect the results.

4.4.5. Programming Language

The ZIT model was implemented in PySpark 1.6. Spark (Apache

Software Foundation, 2016) is a general processing engine for use in HPC

environments. PySpark is a Spark Python API that extends the Python

programming language to the Spark programming model. Spark works with

YARN to distribute multiple tasks across the cluster as shown in Figure 7.

4.4.6. Approach

Parallelization of the ZIT model using this hardware requires a modified

approach. The underlying system communicates and stores data in a

fundamentally different way than that of a single computing system. Since the

data is immutable, transactions must take place using a series of map and filter

operations. A map operation applies some function to each element in a list,

38

returning a list of results. A filter operation applies a set of criteria to each

element in a list and returns a subset of the original list. The result is a functional

programming approach to the problem rather than the procedural approach used

by some other languages.

Unlike hardware using just physical cores or software threads, this HPC

cluster necessitated a two dimensional approach to resource allocation. The

concept of threads still exists as cores, but increasing the number of cores alone

does not decrease execution time in a generally monotonic fashion. Instead, each

data node also has executors that are responsible for implementing tasks on each

core. Therefore, computational resources are assigned by stating the number of

Figure 7 - How Spark Manages Work

(Source: Cloudera, 2015a)

39

executors (1-n) and cores (1-c) (where n >= 1 and c >=1 and c <= the number of

CPUs on the data node) to be used on the problem.

4.4.7. Experiment and Results

Given the two dimensions of resources, the first experiment was to

discover the most efficient combination of cores and executors. It became clear

there was no standard answer as a number of information sources, including

Cloudera, all proposed different solutions. In a two part blog posting (Cloudera,

2015a; Cloudera, 2015b) offered several operating environment parameter

adjustments for finding the best solution. Apache Spark went further, including

adjustments accounting for the physical relationship between the compute nodes

and the data locality (Apache Software Foundation, 2017). Garbage collection

could also make a difference (Wang & Huang, 2015). In each case, no single

solution was offered.

Using the available HPC, the ZIT model is run 30 times each using a

parameter sweep from 1-44 executors and 1-24 cores with 10
4
 agents and 10

6

trades. The maximum prices for the agents were set to 30. The results in Figure 8

show the average execution time (in seconds) in two dimensions of the effect of

varying these two parameters. The maximum number of seconds was artificially

capped at 43.8 seconds (the average across all results plus 3 standard deviations)

to better visualize the differences between regions. The horizontal line shows the

hyper-thread boundary of the twelve physical CPUs and shows the effect of

40

hyper-threading under some conditions. The number of data nodes also created a

boundary condition at two times the number of data nodes (the right vertical line).

Some combinations were always sub-optimal. For example, using a single

executor always resulted in a poor time no matter how many cores were used.

Using three or fewer cores was also a poor choice if the number of executors was

not more than the number of data nodes. There were also unexplained slow areas,

such as when six executors were used.

Figure 8 - ZIT HPC Optimization Parameter Sweep Results

41

Optimal areas were discovered. Figure 9 shows the fastest execution times

took place when using 10 to 12 executors coupled with 12 to 15 cores. This is in

contrast to applying a maximum resource of 44 executors and 24 cores. That

fewer computational resources results in a faster execution time at first appears

counterintuitive. However, this may be the result of increased communication

interactions between the data nodes at the operating environment level.

The ZIT model itself required no inter-agent communication during

execution. Each data node operated independently until local results were

Figure 9 - ZIT HPC Optimization Analysis

42

reported back to the top-level job. Increasing the number of executors beyond the

best time area, usually led to slower model execution times. This was particularly

noticeable when the number of cores was also increased to the point that hyper-

threading was engaged. Decreasing execution time may be best accomplished by

increasing the number of data nodes. Doing so will most likely change the

executor/core boundaries that delineate the area of best execution. The social

scientist will need to gather information regarding their hardware environment

before committing to a large run of their EBM.

Using the discovered best combination for this problem, the second part of

the experiment is performed. Selecting 12 executors and 14 cores, a parameter

sweep of 10
3
 through 10

7
 agents is conducted. The number of trades is set to be

always 10
2
 greater than the number of agents. Maximum agent trade values are set

to 30. For each set of agents, 30 runs are conducted with the results shown in

Table 6 and graphically in Figure 10. Previous speed multiplier calculations were

Table 6 - ZIT Time to Complete on HPC Cluster

 Agents Mean in Milliseconds Standard Deviation in Milliseconds

 10^3 17,688 813

 10^4 19,068 765

 10^5 34,427 734

 10^6 180,999 3,971

 10^7 1,714,556 17,418

43

predicated on the single dimension of a LPE. The addition of executors in a

second dimension precludes a simple speed multiplier calculation. Consequently,

the comparison of agent scaling in Table 6 and Figure 10 is shown in raw

execution time.

4.4.8. Recommendation

Using an HPC cluster could be an easier route for the social scientist as

they are separated from direct interaction with the hardware in most cases.

Various providers such as Amazon, Google, and Microsoft offer free training for

their commercial offerings and rent time on a HPC that can be sized to the need of

Figure 10 - HPC ZIT Speedup Results

0

500,000

1,000,000

1,500,000

2,000,000

10^3 10^4 10^5 10^6 10^7

T
im

e
(M

il
li

se
c
o

n
d

s)

Number of Agents

Mean Time to Complete Model Run

44

the social scientists. Best use would be to create a small cluster used to learn the

operating environment and test the viability of the model. Then scale the number

of data nodes testing the speed of completion and the number of cores and

executors. Finally, the full-scale model could be run with the maximum agents

desired. For those social scientists desiring direct interaction with the hardware, it

should be noted that all of the software, Linux, Hadoop, YARN, and Spark are

available as open source at no cost. The software may be used on hardware as

simple as the Raspberry Pi.

45

5. MODEL VERIFICATION AND VALIDATION

5.1. Verification

The ZIT model is a simple model, as previously illustrated in Table 2. The pre-

existing code used for CPU parallelization was used as a source for porting to the new

hardware. Each model's code was verified as correct by first correcting any

implementation syntax errors in the programming language. Once correct, the outcomes

of any functions were examined by using test data with known outcomes. Finally, the

assembled code was run using a small number of agents and trades to ensure end-to-end

completeness.

5.2. Validation

The purpose of validation is to, "show that the model actually works in a similar

fashion to the real world" (Wilensky & Rand, 2015, p. 335). The ZIT model, however, is

a theoretical model with no direct connection to real world trading. A trading model can

be considered structurally valid (Cioffi-Revilla, 2014, pp. 297-299) if it is internally

consistent with the manner in which real traders operate, no matter how simply. For a

trade to occur there must be at least one willing buyer and one willing seller. The ZIT

model does follow this simple rule. The model also provides the mean and standard

deviation of the overall trade results for each run. These values were examined and,

despite the number of agents and trades changing, were found to be internally consistent.

46

6. SUMMERIZED RESULTS AND CONCLUSION

This concluding chapter restates key research findings in Section 6.1.

Suggestions and opportunities for extending this thesis are found in Section 6.2, and

some concluding thoughts are in Section 6.3. Table 7 recaps the research questions and

findings.

6.1. Overview of Research Findings

Simple SPSD EBM frameworks such as NetLogo can quickly run out of

computational resources as a model increases in size. Bypassing frameworks and directly

using the underlying programming languages allows more flexibility, but are still

constrained unless a language is fully integrated with the hardware capabilities. Three

research questions were explored. 1) Does the underlying hardware play a role in the

social scientist's capability to create large-scale models? 2) If so, does the hardware

change the approach and skills needed for modeling? 3) Is it worth the effort?

A well-coded model in any programming language is still restricted by the

computational resources made available by the hardware. A fast CPU operating

sequentially is limited by the time it takes to execute a single instruction and the size of

memory that contains the model. Dividing the problem across multiple computational

resources decreases the time to complete a model run. To explore its problem space, an

EBM may need to be run thousands of times with different parameters. Figure 11

47

provides a comparison of the raw execution time results from all three experiments. For

each, the intersection of agents and threads shows a circle whose area represents the

mean execution time in milliseconds. (An approximation of threads for the HPC model

was calculated as 168, 12 executors times 14 cores.) The GPGPU achieved the fastest

execution time, but the HPC was able to handle a greater number of agents. The ASIC

was the slowest hardware, but provided uniform scaling across all agents as shown in

Figure 6. The ASIC was also the easiest to implement using an SPMD approach. All

experiments in this thesis demonstrated a decrease in execution time, and increase in

speed multiplier, by utilizing parallel capable hardware. Decreasing run time permits

larger models to be executed with the same period. The first research question is

answered: The correct hardware can increase the social scientist's capability to

create large-scale models by allowing for the possibility of parallelism.

The ZIT model was chosen because of its simplicity. This embarrassingly

parallel model only requires agent communication at the conclusion of program

execution. Despite its simplicity, implementation in each experiment required a different

approach. The first step was to obtain a deeper knowledge of the hardware than is

required for sequential computing. Surprisingly the HPC cluster required the least

amount of hardware knowledge. As a collection of commodity computers, it was only

necessary to know the number of data nodes, LPEs per data node, and the amount of

memory available at each data node. Discovering the appropriate amount of

computational resources for the problem, however, was more complicated as it required a

two-step process and a two dimensional solution.

48

The ASIC as a coprocessor presented itself ready for SPMD. Therefore,

understanding the access and use of a single LPE was identical to understanding multiple

LPEs. Any hardware offering SPMD should be sought after by the social scientist.

The GPGPU required the most effort in understanding the hardware. Originally

designed to speed the display of images on monitors, this hardware was quickly diverted

into a role as a computational resource. Its beginnings as a GPU tie it to smaller memory

Figure 11 - Comparison of Three Model Results

49

than is typically available on the host and to simpler computational LPEs. Careful

attention to memory management becomes critical, quirks such as warp size may modify

the model, and the simple computational core will not support some functions normally

available to a programming language.

The second step was to understand the affect hardware had on the programming

languages that in turn affected the programming approach. The ASIC hardware

supporting SPMD required but a single program that could be distributed without further

modification to all LPEs. The programming language eBASIC is a sub-dialect of

decades old simple language to which has been added a small number of extensions

specific to the Parallella, parallel processing, and concurrent processing. Despite the

simplicity of the language, it was fully capable of implementing the ZIT model. The

language, combined with the SPMD architecture, made implementation easy, as very few

hardware specific changes were necessary. Not as easy was the GPGPU implementation

that leaned heavily on the CUDA environment. As an extension to the C programming

language, CUDA kernels mimicked C functions. Thus, it is necessary to understand how

CUDA communicates with the hardware. Any difficulties were with ensuring GPGPU

resources were properly allocated through the kernel interface. Fortunately several

CUDA error checking functions are available that should be understood and used

routinely by the social scientist. Finally, the HPC cluster required the ZIT model to be

written using a functional programming approach. A data set of pre-trading agents was

produced and distributed to the data nodes. Once created the data set was immutable thus

could not be changed. A sequence of functions and filters were applied to the immutable

50

data to transform it into a new dataset with the trade results. The second research

question is answered: The hardware does change the approach and skills needed for

modeling. The amount of change and the level of programming skills will vary

between hardware types. SPMD co-processer architecture may require the least

additional skills.

In most cases, social scientists would be best advised to use an EBM framework

or sequential programming. Not every model will have so many agents, such a large

geographic space, or immense communication that a parallel EBM solution would be

worth the extra effort. In such cases, however, a parallel EBM may be the only solution.

For some hardware architectures, it might be best for the social scientist to collaborate

with a computer scientist. The third research question is answered: Is it worth the effort

only when it is the only available solution. Table 7 provides a recap.

Table 7 - Research Question Recap

Number Research Question Research Answer

1 Does the underlying

hardware play a role in the

social scientist's capability

to create large-scale

models?

The correct hardware can increase the social

scientist's capability to create large-scale models

by allowing for the possibility of parallelism.

2 If so, does the hardware

change the approach and

skills needed for modeling?

The hardware does change the approach and skills

needed for modeling. The amount of change and

the level of programming skills will vary between

hardware types. A SPMD co-processer

architecture may require the least additional skills.

3 Is it worth the effort? Is it worth the effort only when it is the only

available solution.

51

6.2. Future Research

An obvious research area is the creation of a parallel EBM framework for each of

these hardware configurations and some work such as FLAME

(http://www.flamegpu.com/) has been completed in this area. These frameworks were

not explored in this thesis as the focus was on hardware. Parallel EBM frameworks

would solve the need for the social scientist to acquire in-depth hardware knowledge.

Hardware specific research should include increasing the number of data nodes in

HPC clusters, using multiple GPGPU boards on a single host, HPC clusters whose

commodity computers include GPGPU boards, chaining ASIC boards to increase the

number of LPEs, and exploring HPC clusters with installed ASIC coprocessors.

Finally, testing a more complex EBM in these environments may better compare

the architectures. In particular, an EBM that requires agent communication during and

not just at the conclusion of the model run. In this case, it may be essential to tie the

locality of the agents to a computational LPE so to minimize the need to transfer

information across computational boundaries.

6.3. Conclusion

Simple EBMs that fit within the computational limitations of a single computer

executing sequential tasks may no longer be adequate for future EBM questions. The era

of big data and data science has embraced the concept of analysis of populations rather

than just samples. There is no reason to expect EBMs will be any different with the wide

52

array of available computing power. This thesis will hopefully be a benefit to the social

scientist who is faced with a large-scale model and limited time.

53

APPENDIX A - LEXICON

As with any specialization, there is terminology specific to EBM parallelization that a

social scientist must know.

Application Programming Interface (API): A means for a software component to

communicate with another software component. A component may provide the API as a

standardized means by which another component may request access to data or resources.

ASIC (Application Specific Integrated Circuit): An integrated circuit (chip) designed

for some specific use. An example for parallel processing is a set of homogeneous RISC

processors in a mesh grid on a single chip.

Cellular Automata (CA): A limited type of EBM that is of the simplest types of social

simulation models. There are no agents; instead, each region in some environment reacts

to its surroundings. Over time, these reactions can create the illusion of movement.

Chip: See Integrated Circuit.

Cluster: See Computer Cluster.

Computer Cluster: A collection of computers of which some or all can be focused on

the same task. Resource allocation within the cluster is left to cluster management

software, thus the cluster can be viewed as a single system.

Concurrent Computing: The ability to simultaneously execute several tasks that may be

unrelated. Similar, but distinct from parallel computing.

Core: See Logical Processing Element.

CPU (Central Processing Unit): An electronic circuit, or chip, which performs low-

level program instructions. Multiple CPUs on a single chip are referred to as cores. A

single chip with multiple cores can be called a socket.

EBM Framework: A software application purposely designed to facilitate the execution

of an Entity-Based Model.

54

GPGPU (General purpose computing on graphics processing units: The use of a

GPU to perform non-graphic computational tasks normally performed by a CPU. EBM

frameworks that use a GPU for computing fall under this definition.

GPU (Graphics Processing Unit): A system of parallel configurations that can

efficiently process blocks of data simultaneously. Originally designed to speed up visual

displays, they have been adapted to scientific computing. (See SIMD.)

Hadoop: Apache Hadoop is open source software that provides an environment for

distributing large data sets across a computer cluster. Also, see YARN.

High performance computing (HPC): An increase in computation power achieved by

aggregating multiple computing resources and focusing them on a single task.

Integrated Circuit (IC): A collection of electronic components and wires on a single flat

piece of semiconductor material. An essential component of most current computing

systems.

Logical Processing Element (LPE): The use of hyper-threading technology can create

the illusion of multiple processors where there is but one physically. Most often, there

appears to be two logical processing elements per physical element. When determining

the number of available cores, software applications count these logical processing

elements.

MIMD (Multiple instruction streams, multiple data streams): Multiple cores work on

multiple blocks of data simultaneously.

MISD (Multiple instruction streams, single data stream): Multiple cores work on the

same block of data. Useful in situations where a core could fail to produce correct results.

Network on Chip (NoC): One or more communication networks between cores on a

single integrated circuit. The network can operate either synchronously or

asynchronously.

Parallel Computing: The ability to simultaneously execute a group of tasks created by

dividing an original task into many smaller identical tasks. Similar, but distinct from

concurrent computing.

RISC (Reduced instruction set computing) coprocessor: A special purpose processor

using a limited but fast set of instructions that is tightly coupled to the CPU.

55

SOC (System on a Chip): A single integrated circuit that encompasses all necessary

components for a functioning computer.

Socket: See CPU.

SIMD (Single instruction stream, multiple data streams): A single set of instructions

is simultaneously applied to multiple blocks of data. (See GPU.)

SISD (Single instruction stream, single data stream): A single set of instructions is

applied to a single block of data. This is a sequential (non-parallel) process.

Speed Multiplier: A relative comparison of execution time where the base is set to the

time to complete using a single LPE or core. The Speed Multiplier is calculated by

dividing the base execution time by the execution time using multiple LPEs.

Speedup: See Speed Multiplier.

YARN (Yet Another Resource Negotiator): An operating system for large-scale

distributed data processing. Used by Hadoop.

56

REFERENCES

Aaberge, T. (2004). Analyzing the Performance of the Epiphany Processor. Thesis,

Norwegian University of Science and Technology, Trondheim, Norway.

Retrieved from

https://daim.idi.ntnu.no/masteroppgaver/011/11745/masteroppgave.pdf

Adapteva. (2013). Epiphany Architecture Reference Manual. Reference, Cambridge,

MA. Retrieved from http://www.adapteva.com/docs/epiphany_arch_ref.pdf

Anderson, D. P. (2004). BOINC: A System for Public-Resource Computing and Storage.

Proceedings. Fifth IEEE/ACM International Workshop on Grid Computing, 2004

(pp. 4 - 10). Pittsburgh: IEEE.

Apache Software Foundation. (2016). Spark. Retrieved from http://spark.apache.org/

Apache Software Foundation. (2017). Tuning Spark. Retrieved from

https://spark.apache.org/docs/latest/tuning.html

Axtell, R. L. (2008). The Rise of Computationally Enabled Economics. Eastern

Economic Journal, 34(4), pp. 423-428.

Axtell, R. L. (2011). Zero Intelligence Traders - Non-Object-Oriented Version. Fairfax,

Virginia, USA.

Axtell, R. L. (2016). 120 Million Agents Self-Organize into 6 Million Firms: A Model of

the U.S. Private Sector. Proceedings of the 2016 International Conference on

Autonomous Agents & Multiagent Systems (pp. 806-816). Singapore: International

Foundation for Autonomous Agents and Multiagent Systems.

Axtell, R. L., Axelrod, R., Epstein, J. M., & Cohen, M. D. (1996). Aligning simulation

models: A case study and results. Computational & Mathematical Organization

Theory, 1(2), 123-141.

57

Bankes, S. C. (2002). Agent-based modeling: A revolution? Proceedings of the National

Academy of Sciences, 99, pp. 7199-7200.

Benthall, S. (2016). Philosophy of Computational Social Science. The Journal of Natural

and Social Philosophy, 12(2), 13-30.

Bradhurst, R. A., Roche, S. E., East, I. J., Kwan, P., & Garner, M. G. (2016). Improving

the computational efficiency of an agent-based spatiotemporal model of livestock

disease spread and control. Environmental Modelling and Software, 77, 1-12.

Brown, N. (2015). Epiphany Basic. GitHub. GitHub. Retrieved from

https://github.com/mesham/ebasic

Cioffi-Revilla, C. (2014). Introduction to Computational Social Science. New York:

Springer.

Cleary, A. J., Smith, S. G., Vassilevska, T. K., & Jefferson, D. R. (2005). Scalable Entity-

Based Modeling of Population-Based Systems, Final LDRD Report. Lawrence

Livermore National Laboratory. Livermore: United States Department Of Energy.

Retrieved from https://e-reports-ext.llnl.gov/pdf/315877.pdf

Cloudera. (2015a). How-to: Tune Your Apache Spark Jobs (Part 1). Retrieved from

http://blog.cloudera.com/blog/2015/03/how-to-tune-your-apache-spark-jobs-part-

1/

Cloudera. (2015b). How-to: Tune Your Apache Spark Jobs (Part 2). Retrieved from

https://blog.cloudera.com/blog/2015/03/how-to-tune-your-apache-spark-jobs-part-

2/

Cordasco, G., De Chiar, R., Mancuso, A., Mazzeo, D., Scarano, V., & Spagnuolo, C.

(2013). Bringing together efficiency and effectiveness in distributed simulations:

The experience with D-Mason. SIMULATION, 89(10), 1236-1253.

Cordasco, G., De Chiara, R., Mancuso, A., Mazzeo, D., Scarano, V., & Spagnuolo, C.

(2012). A Framework for Distributing Agent-Based Simulations. European

Conference on Parallel Processing (pp. 460-470). Berlin, Heidelberg: Springer.

Crooks, A. T. (2017). Cellular automata. In D. Richardson, N. Castree, M. F. Goodchild,

A. Kobayashi, W. Liu, & R. R. Marston (Eds.), International Encyclopedia of

Geography: People, the Earth, Environment and Technology. John Wiley & Sons,

Ltd.

58

Crooks, A. T., & Hailegiorgis, A. B. (2014). An agent-based modeling approach applied

to the spread of cholera. Environmental Modelling & Software, 62, pp. 164-177.

Crooks, A. T., Castle, C., & Batty, M. (2008). Key Challenges in Agent-Based Modelling

for Geo-Spatial Simulation. GeoComputation: Modeling with spatial agents,

32(6), 417-430.

Dematte, L., & Prandi, D. (2010). GPU computing for systems biology. Briefings in

Bioinformatics, 11, 323-333.

Dongarra, J., Gannon, D., Fox, G., & Kennedy, K. (2007). The Impact of Multicore on

Computational Science Software. CTWatch Quarterly, 3(1).

Drummond, C. D. (2009). Replicability is not Reproducibility: Nor is it Good Science.

Proceedings of the Evaluation Methods for Machine Learning Workshop at the

26th ICML. Montreal.

Epstein, J. M. (1999). Agent-based computational models and generative social science.

Complexity, 4(5), 41-60.

Epstein, J. M., & Axtell, R. L. (1996). Growing Artificial Societies. Washington: The

Brookings Institution.

Epstein, J. M., & Axtell, R. L. (1997). Artificial societies and generative social science.

International Symposium on Artificial Life and Robotics. 1, pp. 33-34. Oita:

Springer-Verlag.

Fachada, N., Lopes, V. V., Martins, R. C., & Rosa, A. C. (2016). Parallelization

Strategies for Spatial Agent-Based Models. International Journal of Parallel

Programming, 1-33. Retrieved 2016

Flynn, M. J. (1966). Very high speed computers. Proceeding of the IEEE, 54, pp. 1901-

1909.

Gardner, M. (1970). The fantastic combinations of John Conway's new solitaire game

"life". Scientific American, pp. 120-123. Retrieved from

http://www.ibiblio.org/lifepatterns/october1970.html

Geist, A., & Reed, D. A. (2015). A survey of high-performance computing scaling

challenges. International Journal of High Performance Computing Applications,

1-10.

59

Gilbert, N., & Terna, P. (2000). How to build and use agent-based models in social

science. Mind & Society, 1(1), 57-72.

Gode, D. K., & Sunder, S. (1993). Allocative Efficiency of Markets with Zero-

Intelligence Traders: Market as a Partial Substitute for Individual Rationality. The

Journal of Political Economy, 101(1), 119-137.

Gong, Z., Tang, W., Bennett, D. A., & Thill, J.-C. (2012). Parallel agent-based simulation

of individual-level spatial interactions within a multicore computing environment.

International Journal of Geographical Information Science, 27(6), 1152-1170.

Grimm, V., & Railsback, S. F. (2005). Individual-based Modeling and Ecology.

Princeton: Princeton University Press.

Hayes, R., Todd, A., Chaidarun, N., Tepsuporn, S., Beling, P., & Scherer, W. (2014). An

agent-based financial simulation for use by researchers. Proceedings of the 2014

Winter Simulation Conference (pp. 300-309). Savanah: IEE.

Heijnen, P., Chappin, É. J., & Nikolic, I. (2014). Infrastructure Network Design with a

Multi-Model Approach: Comparing Geometric Graph Theory with an Agent-

Based Implementation of an Ant Colony Optimization. Journal of Artificial

Societies and Social Simulation. Retrieved from

http://jasss.soc.surrey.ac.uk/17/4/1.html

Herlihy, M., & Shavit, N. (2012). The Art of Multiprocessor Programming (Revised First

Edition ed.). Waltham: Morgan Kaufmann.

Hogeweg, P., & Hesper, B. (1983). The Ontogeny of the Interaction Structure in Bumble

Bee Colonies: A MIRROR Model. Behavioral Ecology and Socialbiology(12),

271-283.

Holcombe, M., Coakley, S., & Smallwood, R. (2006). A general framework for agent-

based modelling of complex systems. Proceedings of the 2006 European

conference on complex systems.

Husselmann, A. V., & Hawick, K. (2011). Simulating species interactions and complex

emergence in multiple flocks of BOIDS with GPUS. Proceedings of the IASTED

International Conference on Parallel and Distributed Computing and Systems

(pp. 100-107). Dallas: ResearchGate.

60

Kim, I.-H., Tsou, M.-H., & Feng, C.-C. (2015). Design and implementation strategy of a

parallel agent-based Schelling model. Computers, Environment and Urban

Systems, 49, 30-41.

Laville, G., Mazouzi, K., Lang, C., Philippe, L., & Marilleau, N. (2013). Using GPU for

multi-agent soil simulation. Proceedings of the 2013 21st Euromicro

International Conference on Parallel, Distributed, and Network-Based

Processing (pp. 392-399). Belfast: IEEE.

Lazer, D., Alex, P., Adamic, L., Aral, S., Barabási, A.-L., Brewer, D., . . . Van Alstyne,

M. (2009). Computational Social Science. Science, pp. 721-723.

Leinweber, M., Bitter, P., Bruckner, S., Mosch, H.-U., Lenz, P., & Freisleben, B. (2014).

GPU-based simulation of yeast cell flocculation. Proceedings - 2014 22nd

Euromicro International Conference on Parallel, Distributed, and Network-Based

Processing (pp. 601-608). Turin: IEEE Computer Society.

Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., & Balan, G. (2005). MASON: A

Multi-Agent Simulation Environment. Simulation: Transactions of the society for

Modeling and Simulation International, 82(7), 517-527.

Lysenko, M., & D’Souza, R. M. (2008). A framework for megascale agent based model

simulations on graphics processing units. Journal of Artificial Societies and

Social Simulation, 11(4), 10. Retrieved from

http://jasss.soc.surrey.ac.uk/11/4/10/10.pdf

Macy, M. W., & Willer, R. (2002). From Factors to Actors: Computational Sociology

and Agent-Based Modeling. Annual Review of Sociology, 28, 143-166.

McCabe, S., Brearcliffe, D. K., Froncek, P., Hansen, M., Kane, V., Taghawi-Nejad, D., &

Axtell, R. L. (2016). A comparison of languages and frameworks for the

parallelization of a simple agent model. Proceedings of the 17th International

Workshop on Multi-Agent-Based Simulation (pp. 126-144). Singapore: Multi-

Agent-Based Simulation (MABS) 2016.

McCanny, J., Ridge, J., Hu, Y., & Hunter, J. (1997). Hierarchical VHDL libraries for

DSP ASIC. Acoustics, Speech, and Signal Processing (ICASSP-97) (pp. 675-678).

IEEE.

Meeth, L. R. (1978). Interdisciplinary Studies: A Matter of Definition. Change, 10(7), 10.

61

Moore, G. E. (1965). Cramming more components onto integrated circuits. Electronics,

38(8).

North, M. J., Collier, N. T., Ozik, J., Tatara, E. R., Macal, C. M., Bragen, M., & Sydelko,

P. (2013). Complex adaptive systems modeling with Repast Simphony. Complex

Adaptive Systems Modeling, 1(3).

Nurvitadhi, E., Sim, J., Sheffield, D., Mishra, A., Krishnan, S., & Marr, D. (2016).

Accelerating recurrent neural networks in analytics servers: Comparison of

FPGA, CPU, GPU, and ASIC. 26th International Conference on Field

Programmable Logic and Applications (FPL) (pp. 1-4). Lausanne: IEEE.

NVIDIA Corporation. (2012). NVIDIA’s Next Generation CUDA Compute Architecture:

Kepler GK110. Santa Clara: NVIDIA Corporation. Retrieved from

https://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-

Architecture-Whitepaper.pdf

NVIDIA Corporation. (2013). Unified Memory in CUDA 6. Santa Clara. Retrieved from

https://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/

NVIDIA Corporation. (2017a). CUDA Parallel Computing Platform. Santa Clara.

Retrieved from http://www.nvidia.com/object/cuda_home_new.html

NVIDIA Corporation. (2017b). Unleash Your Potential with the Jetson TX1 Developer

Kit. Santa Clara. Retrieved from

https://developer.nvidia.com/embedded/buy/jetson-tx1-devkit

NVIDIA Corporation. (2017c). Accelerated Computing - Training. Santa Clara.

Retrieved from https://developer.nvidia.com/accelerated-computing-training

NVIDIA Corporation. (2017d). What is GPU-Accelerated Computing? Santa Clara.

Retrieved from http://www.nvidia.com/object/what-is-gpu-computing.html

NVIDIA Corporation. (2017e). Parallel Thread Execution. Santa Clara.

NVIDIA Corporation. (2017f). An Even Easier Introduction to CUDA. Santa Clara.

Retrieved from https://devblogs.nvidia.com/parallelforall/even-easier-

introduction-cuda/

Olofsson, A. (2016). Epiphany-V: A 1024 processor 64-bit RISC System-On-Chip.

Lexington: Adapteva Inc. Retrieved from https://www.parallella.org/wp-

content/uploads/2016/10/e5_1024core_soc.pdf

62

Ostrom, T. M. (1988). Computer simulation: The third symbol system. Journal of

Experimental Social Psychology, 381-392.

Owens, J. D., Houston, M., Luebke, D., Green, S., Stone, J. E., & Phillips, J. C. (2008).

GPU Computing. Proceedings of the IEEE. 96, pp. 879-899. IEEE.

Papadimitriou, C. H., & Yannakakis, M. (1994). On complexity as bounded rationality.

STOC '94 Proceedings of the twenty-sixth annual ACM symposium on Theory of

computing (pp. 726-733). New York: ACM.

Parunak, H. V., Savit, R., & Riolo, R. L. (1998). Agent-Based Modeling vs. Equation-

Based Modeling: A Case Study and Users’ Guide. Proceedings of Multi-agent

systems and Agent-based Simulation (MABS'98) (pp. 10-25). Paris: Springer.

Railsback, S. F., & Grimm, V. (2012). Agent-Based and Individual-Based Modeling: A

Practical Introduction. Princeton: Princeton University Press.

Ralston, A., & Meek, C. (Eds.). (1976). Encyclopedia of Computer Science. New York:

Litton Educational Publishing, Inc.

Ren, C., Yang, C., & Jin, S. (2009). Agent-Based Modeling and Simulation on

Emergency Evacuation. Lecture Notes of the Institute for Computer Sciences,

Social Informatics and Telecommunications Engineering, 5, pp. 1451-1461.

Reynolds, C. W. (1987). Flocks, herds and schools: A distributed behavioral model.

SIGGRAPH '87 Proceedings of the 14th annual conference on Computer graphics

and interactive techniques (pp. 25-34). New York: ACM SIGGRAPH Computer

Graphics.

Richie, D., Ross, J., Park, S., & Shires, D. (2015). Threaded MPI programming model for

the Epiphany RISC array processor. Journal of Computational Science, 9, 94-100.

Šalamon, T. (2011). Design of Agent-Based Models. Živonín: Tomáš Bruckner.

Schelling, T. C. (1969). Models of Segregation. The American Economic Review, 59(2),

488-493.

Schelling, T. C. (1971). Dynamic Models of Segregation. Journal of Mathematical

Society, 1, 143-186.

Shook, E., Wang, S., & Tang, W. (2013). A communication-aware framework for

parallel spatially explicit agent-based models. International Journal of

Geographical Information Science, 27(11), 2160-2181.

63

Simon, H. A. (1955). A Behavioral Model of Rational Choice. The Quarterly Journal of

Economics, 69(1), 99-118.

Simon, H. A. (1996). The Sciences of the Artificial (Third ed.). Cambridge: The MIT

Press.

Swarm Development Group. (1999). Swarm. Santa Fe, New Mexico: Swarm

Development Group. Retrieved November 11, 2016, from http://www.swarm.org

Tsang, E. P., & Martinez-Jaramillo, S. (2004). Computational Finance. IEEE

computational intelligence society newsletter, 3(8). IEEE.

Uchmański, J., & Grimm, V. (1996). Individual-based modelling in ecology: what makes

the difference? Trends in Ecology and Evolution, 11(10), 437-441.

Walker, D. C., Hill, G., Wood, S. M., Smallwod, R. H., & Southgate, J. (2004). Agent-

based computational modeling of wounded epithelial cell monolayers.

NanoBioscience, IEEE Transactions on, 3(3), pp. 153-163.

Wang, D., & Huang, J. (2015). databricks. Tuning Java Garbage Collection for Apache

Spark Applications. Retrieved from

https://databricks.com/blog/2015/05/28/tuning-java-garbage-collection-for-spark-

applications.html

Wang, J., Rubin, N., Wu, H., & Yalamanchili, S. (2013). Accelerating simulation of

agent-based models on heterogeneous architectures. ACM International

Conference Proceeding Series (pp. 108-119). Houston: ACM.

Watts, D. J. (2013). Computational social science: Exciting progress and future

directions. The Bridge on Frontiers of Engineering, 43(4), 5-10.

Wendel, S., & Dibble, C. (2007). Dynamic Agent Compression. Journal of Artificial

Societies and Social Simulation, 10(2), 9. Retrieved from

http://jasss.soc.surrey.ac.uk/10/2/9.html

Wilensky, U. (1999). NetLogo. Evanston: Center for Connected Learning and Computer-

Based Modeling, Northwestern University. Retrieved from

http://ccl.northwestern.edu/netlogo/

Wilensky, U., & Rand, W. (2015). An Introduction to Agent-Based Modeling.

Cambridge: The MIT Press.

64

Xiong, C. (2015). On Agent-Based Modeling: Multidimensional Travel Behavioral

Theory, Procedural Models and Simulation-Based Applications. College Park:

University of Maryland. Retrieved from

http://drum.lib.umd.edu/handle/1903/17362

Yang, C., Ono, I., Kurahashi, S., Jiang, B., & Terano, T. (2015). A grid based simulation

environment for parallel exploring agent-based models with vast parameter space.

Lecture Notes in Computer Science (pp. 534-548). Springer Verlag.

Zaho, T., Li, T., Han, B., Sun, Z., & Huang, J. (2014). Design of Software Defined

hardware counters for SDN. 2014 IEEE 20th International Workshop on Local &

Metropolitan Area Networks (LANMAN) (pp. 1-6). Reno: IEEE.

65

BIOGRAPHY

Dale K. Brearcliffe is a Masters student in Computational Social Science at George

Mason University. He attended California State University Hayward (now known as

California State University East Bay), where he received his Bachelor of Science in

Computer Science in 1983. He is currently a senior consultant and data scientist.

	List of Tables
	List of Figures
	List of Abbreviations
	Abstract
	1. Introduction
	1.1. Introduction
	1.2. Research Questions
	1.3. Thesis Outline

	2. Background
	2.1. Entity-Based Models
	2.2. The Need for Parallelization
	2.3. Frameworks for Entity-Based Models
	2.4. Hardware Categories
	2.5. Recent Efforts to Parallelize EBMs or Conduct Experiments

	3. General Methodology
	3.1. Measurable Results
	3.2. Experiment Structure
	3.3. Programming Language Selection
	3.4. The Zero-Intelligence Traders Entity-Based Model in Parallel

	4. Applied Parallelism
	4.1. Multi-Core Central Processing Unit
	4.2. Graphic Processing Unit
	4.2.1. Introduction
	4.2.2. Hardware
	4.2.3. Justification
	4.2.4. Operating System and Environment
	4.2.5. Programming Language
	4.2.6. Approach
	4.2.7. Experiment and Results
	4.2.8. Recommendation

	4.3. Application Specific Integrated Circuit
	4.3.1. Introduction
	4.3.2. Hardware
	4.3.3. Justification
	4.3.4. Operating System and Environment
	4.3.5. Programming Language
	4.3.6. Approach
	4.3.7. Experiment and Results
	4.3.8. Recommendation

	4.4. High Performance Computing Cluster
	4.4.1. Introduction
	4.4.2. Hardware
	4.4.3. Justification
	4.4.4. Operating System and Environment
	4.4.5. Programming Language
	4.4.6. Approach
	4.4.7. Experiment and Results
	4.4.8. Recommendation

	5. Model Verification and Validation
	5.1. Verification
	5.2. Validation

	6. Summerized Results and Conclusion
	6.1. Overview of Research Findings
	6.2. Future Research
	6.3. Conclusion

	Appendix A - Lexicon
	References
	Biography

