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The use of simulations by social scientists in exploring theories and hypotheses is well 

documented.  As computer systems have grown in capacity, so have interests of social 

scientists in executing larger simulations.  Social scientists often approach their 

simulation design from the top down by selecting an Entity-Based Model (EBM) 

framework from those that are readily available, thus limiting modeling capability to the 

available frameworks. Ultimately, the framework is dependent upon what is at the 

bottom, the hardware architecture that serves as the foundation of the computing system.  

Parallel hardware architecture supports the simultaneous execution of a problem split into 

multiple pieces.  Thus, the problem is solved faster in parallel. In this thesis, a selection 

of parallel hardware architectures is examined with a goal of providing support for 

EBMs. The hardware's capability to support parallelization of EBMs is described and 

contrasted. A simple EBM is tested to illustrate these capabilities and implementation 

challenges specific to parallel hardware are explored. The results of this research offer 



 

 

social scientists better informed choices than the sequential EBM frameworks that 

currently exist. Matching the model to the correct supporting hardware will permit larger 

scale problems to be examined and expands the range of models that a social scientist can 

explore. 
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1. INTRODUCTION 

 

 

 

1.1. Introduction 

Computational Social Science (CSS) is an interdisciplinary (Meeth, 1978) field in 

which mathematics is used computationally to explore social science questions and 

answer social science problems. CSS encompasses a number of computational 

approaches of which one is modeling (Cioffi-Revilla, 2014, p. 2). Agent-based models 

(ABM) and individual-based models (IBM) are the predominant modeling systems used 

by CSS. The description is used despite attempts to redefine CSS by others who seem 

unfamiliar with the existing field. One such attempt is a brief 2009 article in Science 

magazine where fifteen authors argue for the "emergence of a data-driven 'computational 

social science'" without mentioning any form of agent-based modeling or acknowledging 

previous definitions of CSS (Lazer, et al., 2009). A better description of CSS that 

encompasses data science and scientific algorithms was provided by Benthall (2016) who 

writes that scientific algorithms "implement statistical inference" and views 

"computational social science as the application of scientific algorithms to understand 

social phenomena." This view should be construed as including agent-based models as 

scientific algorithms even though such models were not explicitly mentioned. Watts 

(2013) is explicit in describing modeling as an integral part of CSS. 
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ABMs are a means to model issues involving people's decision-making or 

behaviors whereas IBMs model issues generally focused on animals and plants. These 

terms are often used interchangeably (Railsback & Grimm, 2012, pp. xi-xii). There is 

sufficient overlap in tools, use and labeling between these model types that I will use the 

phrase Entity-Based Models (EBM) to describe both (Cleary, Smith, Vassilevska, & 

Jefferson, 2005). This use is not to be confused with "Equation-Based Modeling", 

another definition of EBM, where such simulations are described by a set of equations 

that are evaluated during model execution (Parunak, Savit, & Riolo, 1998). The use of 

EBM in the context of this thesis is for the convenience of the reader and not an attempt 

at redefinition.  

CSS in application has focused on the social science aspect of this 

interdisciplinary field. There are over a thousand papers and EBMs available from 

academic sources such as the Journal of Artificial Societies and Social Simulation 

(http://jasss.soc.surrey.ac.uk/), the OpenABM Consortium (https://www.openabm.org/) 

and International Conference on Social Computing, Behavioral-Cultural Modeling, & 

Prediction and Behavior Representation in Modeling and Simulation (http://sbp-

brims.org) describing results of the application of an EBM to a social problem or 

exploring some other area. Noticeably less is the attention paid to the computer science 

and engineering aspect of CSS. Yet without computers, social scientists might be forced, 

as was Schelling (1969), to conduct simulations in a single dimension with pen and 

paper. For CSS to be interdisciplinary, the contributions of computer science and 

computer engineering must be embraced equally with social science. Rather than leave 
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this solely to the availability of computer scientists, social scientists in the CSS field 

should be fully engaged with the development of the tools they rely on, instead of merely 

users of existing EBM software frameworks that is commonly the case today. 

Frameworks will be discussed in Section 2.3. 

The use of EBMs in science has grown to embrace a number of fields to include, 

but not limited to, computational biology (e.g. Walker, Hill, Wood, Smallwod, & 

Southgate, 2004), public safety (e.g. Ren, Yang, & Jin, 2009), public health (e.g. Crooks 

& Hailegiorgis, 2014), economics (e.g. Axtell, 2008), and ecology (e.g. Grimm & 

Railsback, 2005). Unfortunately, EBMs are often restricted by the slow computing speed 

and limited memory of the computer hardware they operate on requiring model alteration 

(Wendel & Dibble, 2007). Some models compensate for this by limiting the number of 

agents (e.g. Šalamon, 2011, p. 122; Wilensky & Rand, 2015, pp. 418-419), the space in 

which the agents operate (e.g. Wilensky & Rand, 2015, pp. 418-419), or amount of time 

in which computation occurs (e.g. Hogeweg & Hesper, 1983; Heijnen, Chappin, & 

Nikolic, 2014). The increase in computing power as described by Moore's law (1965) has 

enabled social scientists to scale their simulations in stride. Unfortunately, Moore's law 

may not match the needs of social scientists as some may wish to model entire 

populations (e.g. Axtell, 2016). 

Hardware limitations, primarily heat dissipation, have prevented computer 

processors from continuing their increase in computational power. In a bid to overcome 

these limitations, computer hardware engineers have created processors with multiple 
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processing cores (multi-core central processing units (CPU)), general purpose graphics 

processing units (GPGPU), specialized processors (application specific integrated circuit 

(ASIC) system on chip (SOC) coprocessors), and networked computing (homogeneous 

and heterogeneous clusters). These architectural advances have led to an era of "Big 

Data" with the expectation that large amounts of data may be processed. The large data 

boundary, whose processing exceeds either computational or temporal constraints, is 

monotonically increasing. These advances offer the possibility of EBMs with software 

elements that operate simultaneously, in parallel to each other. Existing EBM software 

application frameworks such as NetLogo (Wilensky, 1999), intended for the single 

(sequential) processor, were not designed to take advantage of this type of hardware 

architecture. The demands by some social scientists for large-scale simulations have 

outpaced the computational power available to these sequential frameworks (e.g. Hayes, 

et al., 2014; Xiong, 2015). Efforts in creating frameworks that take advantage of these 

parallel processing architectures, such as Flexible Large-scale Agent Modelling 

Environment (FLAME) for heterogeneous computing  (Holcombe, Coakley, & 

Smallwood, 2006) or GPGPU based models (Lysenko & D’Souza, 2008), have 

fragmented the approach to EBMs across these environments.  In some cases, it may be 

necessary to include a computer scientist as part of the modeling effort. 

Social scientists usually approach their simulation design from the top down by 

selecting an EBM framework from those that are readily available such as NetLogo. This 

approach limits the social scientist to the capability of the chosen framework. Ultimately, 

the framework is dependent upon what is at the bottom, the hardware that serves as the 



5 

 

foundation of the computing system. If a sequential framework such as NetLogo is 

chosen, it will fail to take full advantage of a modern hardware architecture foundation. 

1.2. Research Questions 

In this thesis, I approach the issue from the bottom up by examining a selection of 

parallel hardware architectures from the perspective of providing support for EBMs. This 

thesis attempts to answer three research questions: 1) Does the underlying hardware play 

a role in the social scientist's capability to create large-scale models? 2) If so, does the 

hardware change the approach and skills needed for modeling? 3) Is it worth the effort? 

1.3. Thesis Outline 

The next chapter will provide background information on it EBMs, why parallel 

models are needed, some existing sequential EBM frameworks, hardware architecture 

categories, and some recent efforts to parallelize EBM. Chapter 3 describes the general 

methodology and the EBM selected for experimentation. Applied parallelism is the focus 

of Chapter 4.  First, a description of a previous approach using a multi-core CPU is 

described.  This is followed by a description of the experiment on each of the GPGPU, 

ASIC, and High Performance Computing (HPC) architectures.  Chapter Error! 

Reference source not found. discusses model verification and validation.  Finally, 

Chapter 6 provides a summary of the results and conclusion, along with areas of future 

work. 
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2. BACKGROUND 

 

 

 

2.1. Entity-Based Models 

The label Entity-Based Model (EBM) is used as an amalgamation of agent-based 

models (ABM) and individual-based models (IBM) (Cleary, Smith, Vassilevska, & 

Jefferson, 2005). ABMs are often used to model people (agents) operating in a simulated 

environment using a small number of rules to guide the actions of the agents and changes 

to the environment. Within this in silico laboratory, societies emerge whose interactions 

can be studied over time and by varying the conditions in which they exist. Epstein and 

Axtell (1997) described this as "generative social science" because it encompasses neither 

deductive nor inductive reasoning. Instead, a new scientific process, the "artificial 

society" is used as an instrument of exploration. In a similar fashion, IBMs are generally 

used to model animals and plants in a simulated ecological environment. Classic 

mathematical ecology was based on the idea of the homogeneous averaged individual. 

IBMs introduced heterogeneous individuals with complex lifecycles and individual 

changing resources. Rather than showing mathematically stable ecological systems, 

IBMs permit the study of local changes in population and resources from which the 

ecological system as a whole is an emergent property (Uchmański & Grimm, 1996). 

The acceptance of EBMs in social science has had a number of impacts. EBMs as 

computational models can be viewed as the manifestation of a "third way" of expressing 
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the ideas of social science, going beyond natural language and mathematics (Ostrom, 

1988; Gilbert & Terna, 2000). As an investigative science tool, it has removed some of 

the restrictions imposed by methods that used strict mathematical modeling and proofs 

(Bankes, 2002).  EBMs can be used to explore and sometimes explain emergent behavior 

that occurs when the microscopic behavior of local agent interactions create macroscopic 

patterns across the entire artificial society (Epstein, 1999). Here "emergent" is used as a 

placeholder to acknowledge a process that cannot currently be explained but one day 

might be. Finally, EBMs permit social theories to be tested and experimented on in a 

controlled environment (Macy & Willer, 2002). These models can be run hundreds of 

times or more before analyzing the collective results. 

In this thesis, a third type of modeling approach, the cellular automata (CA), is 

regarded as a limited type of EBM and are thus subsumed by them. CAs are one of the 

simplest types of social simulation models (Cioffi-Revilla, 2014, pp. 16-17, 231-232). 

The key difference is that there are no agents in a CA to move within the environment, 

although there can be an illusion of movement as stationary regions react to changes in 

their surrounding environment (Gardner, 1970). Not all EBMs have agents that move and 

the difference between CA and EBMs become less distinct as the two modeling 

approaches are combined in a single model (Crooks, 2017).  

2.2. The Need for Parallelization 

Herbert Simon (1955; 1996, p. 166) described "bounded rationality" as a limit on 

the ability of an adaptive system to consider all choices in a complex environment. The 
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adaptive system he referred to was a person. In a similar manner, computational 

limitations create a bounded rationality for an EBM software framework when the 

desired number of agents, the size of the environment, or the complexity of calculations 

cannot be concluded within a desired temporal period (Papadimitriou & Yannakakis, 

1994; Tsang & Martinez-Jaramillo, 2004). 

Computer programs have historically been designed to execute sequentially on a 

single computing device. Computational limitations can affect the ability of a social 

scientist to create the simulation needed for a social issue to be fully explored. For 

example in one financial simulation, the authors were able to reproduce a model that 

contained liquidity inconsistencies attributed to its one-thirty-second scale, but were still 

limited to a one-quarter scale (Hayes, et al., 2014). In a livestock EBM, the agents needed 

to be made partially homogeneous by clustering them into heterogeneous, representative 

herds (Bradhurst, Roche, East, Kwan, & Garner, 2016).  Geographic information systems 

can capture spatial data at a level of resolution that exceeds the computational ability to 

model at the same resolution (Crooks, Castle, & Batty, 2008). Computational complexity 

changes from tractable to intractable when agent and environment interactions move 

from a polynomial scale to an exponential scale (Cioffi-Revilla, 2014, p. 64). 

Bounded rationality can mitigate computational limitations by decreasing the 

number of interactions between agents and their environment. Doing so decreases the 

number of calculations and the amount of time needed to complete the model. For large-

scale models, this may not be enough. Increasing the number of calculations that can take 
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place during each time step of the model can increase the model run time. For these 

large-scale models, parallelization offers a potential path to success. 

2.3. Frameworks for Entity-Based Models 

An EBM's existence is predicated on more than just the hardware that serves as 

its foundation as shown in Figure 1. Other intermediate layers also support the EBM and 

one of the more important in this stack is the EBM framework. These frameworks fall 

into two types: Either a general framework useful for creating a wide range of 

simulations or a framework designed specifically for a single model. Examples of general 

EBM frameworks are NetLogo, Swarm (Swarm Development Group, 1999), Repast 

(North, et al., 2013) and Multi-Agent Simulator Of Neighborhoods (MASON) (Luke, 

Cioffi-Revilla, Panait, Sullivan, & Balan, 2005). Designed EMB frameworks are specific 

to the problem a social scientist is exploring and so can be as numerous as there are social 

scientists. The designed EBM is built using a general-purpose programming language in 

lieu of a general EBM framework. An example of this is the Sugarscape model, created 

with the programming languages Object Pascal and C (Axtell, Axelrod, Epstein, & 

Cohen, 1996). Whether general or designed, each EBM framework is based upon one of 

many available general programming languages. While the EBM framework is the layer 

most visible to the social scientist, it is not the intention to study these frameworks but 

merely to acknowledge them for context. Section 2.5 provides use cases of designed and 

general frameworks. 
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2.4. Hardware Categories 

 There are a number of approaches to achieving parallelization. I have categorized 

these approaches from a hardware perspective based on the multi-core central processing 

unit (CPU), graphic processing unit (GPU) also referred to as a general purpose graphic 

processing unit (GPGPU), application specific integrated circuit (ASIC) coprocessors, 

homogeneous clusters, and heterogeneous clusters as shown in Table 1. Although these 

categories are a generalization and could be sub-categorized, they are considered 

sufficient for this thesis.  

 

Figure 1 - An Abstraction of an Entity-Base Model's Relationship to Hardware 
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The first category relies on modern personal computers (servers, desktops, and 

laptops) that have central processing units with multiple logical processing elements 

(LPE) commonly referred to as cores. While servers are not commonly thought of as a 

personal computer, there are but small differences between them and the hardware 

architecture of desktops and laptops. The LPE label is used to differentiate from a 

physical processing element that may contain one or more logical elements. Typically, 

there can be two logical processing elements per physical element often referred to as 

hyper-threading. Software applications count the number of LPEs when determining the 

number of available cores. Also, note that multiple physical processing elements can be 

found within a single integrated circuit (IC). This IC can also be referred to as a CPU or 

Table 1 - Hardware Categories 

Hardware Category Description 

Multi-Core Central Processing Unit A CPU with more than one logical processing 

element. 

Graphic Processing Unit  Composed of thousands of logical processing 

elements. These LPEs do not communicate 

with each other, are simpler, and less capable 

individually than those found in CPUs. 

Application Specific Integrated Circuit Purposely designed for some function. Can 

contain multiple highly specialized RISC 

cores that operate independently or 

collectively on internal NoCs. 

Homogeneous Computing Nodes Nodes of similarly designed and configured 

multi-core computers physically located 

together and optimized for high-speed 

communication. 

Heterogeneous Computing Nodes A distributed network of nodes different types 

of computer hardware and operating systems. 

They can be geographically distributed, 

communicating across the Internet. 
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socket. The number of LPEs in a CPU is currently about ten to twenty for desktops and 

laptops, or near one hundred for a server. If past practices are a prediction of the future, 

hardware companies will increase the number of LPEs. An EBM can be divided among 

these LPEs so that its sub-processes execute in parallel to each other rather than 

sequentially (Herlihy & Shavit, 2012). A second category is the addition of one or more 

graphic processing units to the computer. Each GPU is composed of thousands of LPEs. 

These LPEs do not communicate with each other, are simpler, and less capable 

individually than those found in CPUs, but the total number of them, operating in parallel 

to each other, allow for a large increase in computing power per unit of time (Owens, et 

al., 2008; Dematte & Prandi, 2010). A third category is the use of ASIC coprocessors 

with a CPU. These are purposely designed to implement a function in hardware. They 

can contain multiple highly specialized reduced instruction set computing (RISC) cores 

that operate independently or collectively on their own internal network on chip (NoC) 

optimized for efficient high-speed communication (Richie, Ross, Park, & Shires, 2015; 

Olofsson, 2016). Section 2.5 provides some examples of EBMs using these architectures. 

These first three categories are often attained locally on a single computer that can 

be directly controlled by the social scientist. The next two categories could require the 

social scientist to rely on systems outside their direct control. The fourth category is a 

network of homogeneous computing nodes. These nodes are often multi-core computers 

in of themselves that are physically located together and optimized for high-speed 

communication. Each node has a similar hardware configuration and identical operating 

systems (Geist & Reed, 2015). The fifth and final category is a distributed network of 
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heterogeneous computing nodes. These nodes are each treated as a single computing 

entity where each can be a different type of computer hardware and operating system. 

They are geographically distributed, communicating across the Internet (Anderson, 

2004). These categories are not strictly delimited and can be blended together creating a 

hybrid system. In fact, all personal computers must have a CPU. The addition of GPU or 

ASIC hardware is optional. Similarly, a homogeneous computing network is usually 

composed of computing nodes with multi-core CPUs. A heterogeneous computing 

network can be composed of any personal computer configuration of CPUs, GPUs and 

ASIC. 

2.5. Recent Efforts to Parallelize EBMs or Conduct Experiments 

Social scientists have created parallel simulations and conducted case studies to 

experiment with the feasibility of parallel EBMs. One of the most obvious ways to 

accomplish parallelization is to take advantage of the multi-core CPU. This resource is 

already on the social scientist's computer and under their direct control. A predator-prey 

model implemented by Fachada, Lopes, Martins, and Rosa (2016) on a computer with 

twelve LPEs obtained a speed increase forty times greater than its single LPE equivalent. 

A price in increased programming complexity was paid, however, as the single LPE 

version used NetLogo, a simple EBM framework used to teach modeling, while the 

multi-core model was created in the general-purpose computing language Java. Gong, 

Tang, Bennett, and Thill (2012) showed spatial EBMs, those using a two or more 

dimensional grid on which agents interact, benefited from a speed increase as more cores 
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are added. However when the spatial size was increased along with the cores, the speed 

multiplier was diminished, demonstrating a lack of efficiency. 

GPUs can be added to the social scientist's computer if it does not already have 

one. These units add thousands of LPEs to the system, leading some to label them many-

core processors, but at the cost of greater programming difficulty and reduced capability 

for each GPU core. Leinweber, et al. (2014) used a GPU for an EBM of yeast 

flocculation that resulted in a speed increase of 736 times over the single LPE version for 

20,000 agents. The speed increase was sufficient to permit real-time observation of the 

model in three dimensions. Another three dimensional visualization by Husselmann and 

Hawick (2011) was achieved in modeling the flocking behavior of "Boids." Although 

Reynolds' (1987) original EBM was only two dimensional, the GPUs allowed for the 

third dimension, an increase in the number of agents, and an extension to observe 

multiple competing flocks within the same simulation. Several GPU boards were 

compared with the best results showing about 33,000 agents could be processed in a 

single time step of 0.06 seconds. 

Laville, Mazouzi, Lang, Philippe, and Marilleau (2013) created an EBM of soil 

science that combined the CPU and GPU. By assigning complicated agents to the CPU 

and simple agents or the spatial environment to the GPU, each type of processing unit 

was able to maximize its unique capability. The EBM was incrementally modified from 

its original sequential algorithm to one that could be supported by the CPU and GPU. In 

the ultimate configuration for a hybrid CPU/GPU, some of the newest processors have 
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the CPU and GPU on the same chip. This promises tighter integration and sharing of 

memory resources. Wang, Rubin, Wu, and Yalamanchili (2013) used one of these new 

processors for an EBM traffic simulation of two million vehicles. They showed a speed 

increase of thirty-four times compared to a CPU alone. 

No EBMs using an ASIC coprocessor have been found to be published based on 

an extensive literature review search. However, in a case study of a CA model using an 

ASIC coprocessor, Aaberge (2004) achieved a speed multiplier of sixteen times 

compared to using only the main CPU. It was noted that the coprocessor was capable of 

multiple-instruction, multiple-data (MIMD) and single-instruction, multiple-data (SIMD) 

tasks. MIMD and SIMD are hardware techniques useful for parallelizing data processing 

as categorized by Flynn (1966). 

HPC clusters offer the possibility of dramatic increases in the scale of EBMs, but 

not without the difficulty of retooling models to take full advantage of the hardware 

(Dongarra, Gannon, Fox, & Kennedy, 2007). Kim, Tsou, and Feng (2015) used a HPC 

cluster of homogeneous computers to create the classic Schelling (1971) segregation 

model basing it on the geography and household data of San Diego, California. For the 

one million households and housing units, the EBM achieved almost a 180 times speed 

multiplier across 112 LPEs in the computer cluster. Another classic EBM, Sugarscape 

(Epstein & Axtell, 1996), was also parallelized in a homogeneous HPC cluster. Shook, 

Wang, and Tang (2013) scaled the Sugarscape model from sixteen LPEs to 2,048 LPEs 

for a speed multiplier of almost 1,000 times. They noted that some executions had to be 
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considered outliers and removed from the results dataset. This was attributed to noise 

caused by sharing the HPC with other users, an effect of the social scientist not having 

full control over the computing resource. 

Heterogeneous HPCs can have a worldwide geographic distribution of dissimilar 

computing resources. Yang, Ono, Kurahashi, Jiang, and Terano (2015) showed this 

dissimilarity caused additional challenges when measuring model speed multiplier with 

any results necessarily normalized to the slowest computer in the grid. The slowest 

computer can be different for each model execution. EBM experiments showed a near 

linear increase in speed as the number of computers in the grid increased from one to one 

hundred. The D-MASON (Cordasco, et al., 2012) framework is a distributed, parallel 

version of the single computer EBM framework MASON. In tests contrasting the two 

frameworks, some models that could not be executed using MASON because of 

hardware limitations could be solved using D-MASON (Cordasco, et al., 2013). 

These five categories shown in Table 1 of available hardware demonstrate a 

fragmented approach to parallelization of EBMs. Each of the hardware architectures have 

strengths and weaknesses that indirectly affect the methods that a social scientist must 

employ to reproduce, but not replicate (Drummond, 2009), an existing model or create a 

new one. On the positive side, this fragmentation is to be expected and commended. 

Social scientists are exploring all routes toward a collective goal of creating parallel 

models. On the negative side, the social scientist can waste time and money by choosing 

a parallelization strategy that does not well fit the model they are trying to create. For 
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instance, an EBM that requires extensive communication between agents might not fare 

well on heterogeneous architecture with systems distributed around the world. 
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3. GENERAL METHODOLOGY 

 

 

 

3.1. Measurable Results 

Experiments with different hardware architectures are detailed in Chapter 4.  One 

measurable result from each experiment is the model speed multiplier.  Speed multiplier 

compares the time it takes a model to complete using a single LPE to completion times 

using multiple LPEs.  The number of agents is also changed to show the impact of 

scaling.  Agent scaling also affects speed multiplier. This measure is useful for 

determining the significance of the hardware architecture in solving the social scientist's 

computational resource limitation.  Readers are reminded of the layers shown in Figure 1 

that exist above the hardware.  These other layers may also have an effect on speed and 

could limit speed comparisons between hardware architectures. 

3.2. Experiment Structure 

Each hardware experiment in Chapter 4 is first introduced and followed by a brief 

hardware description and reasons why it was selected. The operating environment and 

programming language is then depicted. The approach used to implement the EBM for 

the hardware is described. Finally, the experiment, results, and any recommendations are 

provided. 
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3.3. Programming Language Selection 

Several factors were considered regarding the selection of the programming 

language used for each hardware architecture. EBM frameworks were rejected because 

there is no assurance that the framework developers had taken full advantage of the 

underlying hardware. These developers must make design decisions regarding the 

anticipated general use of the framework that could be inconsistent with the needs of the 

social scientist's simulation. Programming languages are closer to the hardware and 

makes it easier to see how the hardware created or solved EBM challenges. The 

programming language was selected based on general availability, the EBM that was to 

be implemented, and the hardware architecture. This process aided in answering research 

question three, "Is it worth it?" 

3.4. The Zero-Intelligence Traders Entity-Based Model in Parallel 

The Zero-Intelligence Traders (ZIT) model (Gode & Sunder, 1993) is used for 

parallel EBM testing. It simulates a market with buyers and sellers who submit random 

offers and bid for a single type of a notional item. These traders have no means to 

observe other traders and have no memory of the past market. They also use no learning 

methodologies. Thus, they are deemed to have no "intelligence." Traders have pre-set 

randomly selected limits and will not conduct a trade that violates those limits. Those 

who have yet to conduct a trade are randomly matched. If a seller's minimum price and 

buyer's maximum price limits can be met, a randomly selected value between those limits 

is selected as a negotiated price. The trades are constrained so that each results in a profit. 

Despite the random decision-making, the ZIT agents are able to achieve market 
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efficiency. This led to the conclusion by Gode and Sunder (1993) that it is market 

institutions, and not traders, that have the greatest effect. 

The simulation can be implemented sequentially by iterating through the list of 

buyers and sellers until a predetermined number of trades t have occurred. Parallelizing 

the model entails dividing the buyers and sellers into n groups (where n is the number of 

parallel processes), passing access to the data for each group to n computational units, 

executing t/n trades at each computational unit, and aggregating and summarizing the 

results as shown in Table 2. There is no need for a groups of buyers and sellers to 

communicate with buyers and sellers in other groups during the trade decisions, thus each 

group is independent. 

 

 

Table 2 - Pseudo Code Parallelization of the ZIT Model 

INSTANTIATE and INITIALIZE BUYER, SELLER, DATA and 

THREAD objects; 

Assign sub-populations of BUYERS and SELLERS to THREADS; 

FORK all THREADS; 

FOR each THREAD, REPEAT: 

 - Randomly activate 1 BUYER agent + 1 SELLER agent: 

 - - BUYER proposes a BID price; 

 - - SELLER proposes an ASK price; 

 - - IF (BID > ASK) THEN 

 - - - Pick EXECUTION price between BID and ASK; 

 - - - INCREMENT BUYER holdings; 

 - - - DECREMENT SELLER holdings; 

 - - - Collect DATA on the trade; 

 - INCREMENT the attempted number of trades; 

 - END when maximum trade attempts exceeded; 

JOIN all THREADS; 

Collect final DATA; 

(Source: McCabe, et al., 2016) 
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4. APPLIED PARALLELISM 

 

 

 

4.1. Multi-Core Central Processing Unit 

Parallelization of the ZIT model on a multi-core CPU in the C programming 

language is accomplished by using a fork/join method. ZIT is considered an 

“embarrassingly parallel” problem because each trade transaction decision is independent 

of any other decision. This lack of communication makes it easy to split the possible 

transactions as blocks among different threads. These threads are assigned (forked) to the 

individual CPUs where the results of each block are determined before aggregating the 

results (joined) on the initial thread. Scaling is accomplished by increasing the number of 

assigned threads until some upper limit is reached (McCabe, et al., 2016). 

The multi-core version of the ZIT EBM is attributed to source code made 

available by Robert Axtell (2011). This code was the basis for all experiments in this 

chapter. 

4.2. Graphic Processing Unit  

4.2.1. Introduction 

 CPUs measure their cores in the ones or tens, while GPUs, as depicted in 

Figure 2, do so in the thousands.  The CPU is designed for complex sequential 

operations against small chunks of data. GPUs can perform simple parallel 
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operations against comparatively large amounts of data (NVIDIA Corporation, 

2017d). GPUs are dependent on the presence of a GPU. The CPU has no such 

dependency on the GPU. The simplicity of the GPU aligns well with the idea of 

the EBM that depends on a few, simple rules for its agents coupled with a very 

large number of agents or geographic space that must be processed during each 

step of a model. 

 

There is more than one manufacturer of GPGPUs with NVIDIA 

(http://www.nvidia.com) and AMD (https://www.amd.com) as the most widely 

known. Terminology specific to the NVIDIA GPGPU is used in this thesis. The 

concepts, however, are the same in other manufacturer's implementations. 

 

Figure 2 - Comparison of CPU to GPU Cores 

(Source: NVIDIA Corporation, 2017d) 
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4.2.2. Hardware 

 The hardware platform selected for this experiment is the NVIDIA Jetson 

Tegra X1 (TX1) Developer Kit. Relevant specifications for the CPU support and 

the GPU are in Table 3. This platform was intended as a complete environment 

for software and hardware developers, particularly those needing high 

performance computations (NVIDIA Corporation, 2017b). The GPU is embedded 

in its own board that plugs into the main board. 

4.2.3. Justification 

 This hardware provided a clean environment bereft of additional 

applications that could affect available system resources. Access was 

accomplished via a command line interface, eliminating the overhead of a 

graphical user interface (GUI). 

 

 

 
Table 3 - GPU Hardware 

 Quad-core ARM® Cortex®-A57 

MPCore Processor 

 4 GB LPDDR4 Memory 

 16 GB eMMC 5.1 Flash Storage 

 10/100/1000BASE-T Ethernet 

 5 MP Fixed Focus MIPI CSI Camera 

 NVIDIA Maxwell™ GPU with 256 

NVIDIA® CUDA® Cores 

(Source: NVIDIA Corporation, 2017b) 
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4.2.4. Operating System and Environment 

 The TX1 was pre-installed with the Linux operating system, Ubuntu 

distribution release 14.04 LTS. JetPack 2.2 for L4T was used to load the 

additional software necessary for interacting with the GPU. 

4.2.5. Programming Language 

 Programming for the NVIDIA GPU hardware was accomplished through 

the Compute Unified Device Architecture (CUDA) 7.0 computing platform. The 

CUDA environment provides a means to transfer data between the CPU main 

board (host) and the GPU. It also manages the transfer and execution of programs 

from the host to the GPU. CUDA operates as either an extension of languages 

such as C, C++, and FORTRAN or as an Application Programming Interface 

(API) for other languages such as Python (NVIDIA Corporation, 2017a; NVIDIA 

Corporation, 2017c). 

 For this experiment, the host language used is C under GNU's Not Unix 

(GNU) Compiler Collection (GCC) (https://gcc.gnu.org/) version 4.8.4. The 

acronym GNU is a recursive acronym. The code was compiled using NVIDIA's 

CUDA Compiler (NVCC). 

4.2.6. Approach 

 Programming a GPU requires a different coding approach than that for a 

CPU only. The GPU is reliant on the CPU no matter which programming 

language is chosen. Data must be prepared in the CPU prior to invoking the GPU. 
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Once prepared, the data is moved to the GPU along with a set of programming 

instructions that will execute against the data. Upon completion, the data results 

are moved back to the CPU where additional processing can occur.  This 

communication with the GPU is accomplished using CUDA kernels. These 

sections of code use a triple angle bracket syntax <<< >>> that notifies the CUDA 

compiler it is a GPU function call. 

 The triple angle bracket syntax plays another important role.  Contained 

within the brackets is information informing the GPU of the number of CUDA 

cores to allocate to the task.  Typically, two values representing blocks and 

threads are provided while a third value for grids is optional.  Figure 3 shows the 

relationships between these resources.  Unlike the CPU where the thread is a 

software process, the GPU thread is a single CUDA core, a hardware process.  

CUDA GPUs are best executed in blocks of 32 threads referred to as warps.  This 

is considered a best practice methodology (NVIDIA Corporation, 2012).  

Consequently, thread blocks should always be in multiples of 32.  The block 

value indicates the number of thread blocks to execute, each of which will execute 

a number of threads that have been allocated.  Each GPU model has an upper 

limit for the number of threads that can execute within a single thread block.  It is 

most efficient to use the maximum number of threads available within a thread 

block while never exceeding the upper limit, 1,024 for this GPU.  Violating the 

upper limit will cause the code to fail (NVIDIA Corporation, 2017f).  A CUDA 

command is available to discover properties unique to each GPU model. 
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 One final note is the generation of pseudo random numbers. EBMs often 

use these numbers to explore a model's decision space during multiple runs.  The 

GPU cannot make host system calls to generate pseudo random numbers.  

Consequently, a separate CUDA pseudo random number generator must be used 

on the GPU. This can result in two different pseudo random number generators 

within the same model. 

 

 

 

 

Figure 3 - GPGPU Threads, Blocks, Grids, and Memory 

(Source: NVIDIA Corporation, 2017e) 
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4.2.7. Experiment and Results 

 The GPU code was tested via a parameter sweep varying both the number 

of agents and the number of desired threads. The number of agents was tested 

from 10
3
 through 10

6
 by factor of ten increments against the number of threads 

from 10
0 

to 10
6
, also by factor of 10 increments.  The number of trades was 

always 10
2
 greater than the number of agents and the maximum buyer and seller 

values were sent to 30. Table 4 shows the mean and standard deviation in 

milliseconds of 30 runs for each valid combination of parameters.  Six parameter 

combinations were invalid, as the number of agents cannot exceed the number of 

threads.  The measured times are only for the GPU kernel that calculated trades.  

Sequential CPU time and other preparations were not measured. 

 

 

 
Table 4 - GPGPU ZIT Results 

 Mean in Milliseconds Standard Deviation in Milliseconds 

Threads  10^6 

Agents  

 10^5 

Agents  

10^4 

Agents 

10^3 

Agents 

 10^6 

Agents  

 10^5 

Agents  

10^4 

Agents 

10^3 

Agents 

 10^0  158,001 50,929 5,916 306 21,678 13,643 2,432 53 

 10^1  56,655 9,851 756 45 10,106 2,598 169 19 

 10^2  33,566 2,333 184 26 21,664 374 26 12 

 10^3  17,353 1,530 142 20 5,235 129 24 8 

 10^4  9,430 789 66 --- 3,483 35 14 --- 

 10^5  8,588 702 --- --- 3,378 2 --- --- 

 10^6  4,806 --- --- --- 2,461 --- --- --- 
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 The model used the best practice methodology of running threads in warp 

sized blocks as described in Section 4.2.6.  Consequently, the actual number of 

threads used was sometimes reduced to the nearest warp multiple that did not 

exceed the desired number of threads.  Thus 10
2
, 10

3
, and 10

4
 desired threads 

were reduced to 96, 992, and 9,984 respectively.  This best practice was violated 

for desired threads of 10
0
 and 10

1
 as the result would have been zero threads.  

Instead, the desired number of threads was used.  The model ensured the number 

of threads per block did not exceed the upper limit by adjusting the number of 

thread blocks to accommodate the additional threads.  In doing so, the model also 

ensured the number of threads per block was the same for all thread blocks.  

While selecting desired threads in factors of 10 made near maximum use of 

available threads per block, intermediate values would use smaller values when 

favoring an even distribution of threads across all thread blocks. 

 The speed multiplier, relative to a single thread, for each number of 

agents from Table 4 is shown in Figure 4.  Adding additional threads 

monotonically decreased computation time resulting in a relative speed increase.  

Allocating a single thread, and therefore a single CUDA core, for each agent's 

computation was consistently the best strategy. 
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4.2.8. Recommendation 

 Coding for a GPGPU requires a willingness on the part of the social 

scientist to acquire a deep understanding of the hardware.  Future CUDA 

platforms will no doubt continue to add useful layers between the hardware and 

the programming language, possibly at the expense of additional execution time.  

For example, an addition to the CUDA 6.0 platform, Unified Memory, eliminated 

the need to explicitly declare separate GPU and CPU memory structures and 

explicitly move data between them. However, Unified Memory takes slightly 

longer to execute (NVIDIA Corporation, 2013).  Training for CUDA platforms is 

readily available at NVIDIA, free online courses, and academic institutions.  The 

 

Figure 4 - Speed Multiplier Results Using a GPGPU 
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benefit to the social scientist is a capability to conduct large-scale experiments 

with commonly available and low cost equipment. (The TX1 used in this 

experiment was acquired from NVIDIA for $300 at a 50% education discount.) 

The CUDA platform is capable of using multiple GPU boards attached to the 

same CPU host, adding additional computing power. 

4.3. Application Specific Integrated Circuit 

4.3.1. Introduction 

Application Specific Integrated Circuits (ASIC) are purpose designed 

to implement some function in hardware, often as an accelerator for some process. 

Examples of this include Digital Signal Processing (e.g. McCanny, Ridge, Hu, & 

Hunter, 1997), Software Defined Networks (e.g. Zaho, Li, Han, Sun, & Huang, 

2014), and Neural Networks (e.g. Nurvitadhi, et al., 2016).  Similar to the GPU, 

the ASIC is dependent on a CPU host.  Only some ASICs are useful for 

implementing an EBM. The Adapteva's Epiphany III (Adapteva, 2013) is such an 

ASIC as it is designed for general parallel processing. 

4.3.2. Hardware 

The Epiphany III has sixteen independently operating RISC computing 

nodes (cores) on an internal mesh network. This network on chip (NoC) is 

capable of simultaneous read, on chip write, and off chip write operations as 

shown in Figure 5. Each core has its own 32 KB memory plus access to 512 MB 

memory shared by all nodes. The design of this ASIC supports Single 
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Instruction Multiple Data (SIMD), Single Program Multiple Data (SPMD), 

and Multiple Instruction Multiple Data (MIMD) among others (Adapteva, 

2013). 

The Epiphany is implemented as a co-processor to a CPU (itself a RISC 

ARM 9 processor) on a single Adapteva Parallella board.  While this negates 

compatibility concerns between the CPU host and the ASIC, it limits hardware 

scalability of easily adding another board to a CPU host. The Parallella has 1 GB 

of memory, half of which is the shared memory for the Epiphany. 

 

 

 

 

Figure 5 - The Epiphany Architecture (64 cores shown) 

(Source: Adapteva, 2013) 
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4.3.3. Justification 

The single board Parallella offers an integrated CPU/ASIC environment 

designed for experimenting with SPMD.  All computations can occur on the 

Epiphany while the CPU is in a support role.  Access was accomplished via a 

command line interface eliminating GUI overhead concerns. 

4.3.4. Operating System and Environment 

The Parallella provides an Ubuntu distribution of the Linux operating 

system Release 14.04.  Interactions between the CPU host and the ASIC are 

implemented through libraries and applications that do not interfere with the host 

operating system. 

4.3.5. Programming Language 

The ZIT model is implemented in Epiphany BASIC (eBASIC version 0.1) 

(Brown, 2015). eBASIC is a dialect of the BASIC computer programming 

language, a procedural language developed in the mid-1960s (Ralston & Meek, 

1976). Additional commands specific to the Parallella operating environment and 

parallel processing were added by Brown to this subset of the BASIC language. 

4.3.6. Approach 

An SPMD approach is used to parallelize ZIT. The CPU host distributes 

identical copies of the eBASIC ZIT model to each of the sixteen cores on the 

Epiphany III (SPMD). An area of shared memory, accessible to all cores is 

initialized with seller and buyer data. Each distributed program can determine its 
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unique core identification number and uses this, along with the maximum number 

of cores, to determine which section of shared data is unique to the core. Each 

core executes its code independently until all trades are complete. One core, 

selected as a master, has the additional task of collecting results from the other 

cores and calculating the overall results.  Used in this way, the ASIC cores are 

functionally identical to software threads. 

The SPMD approach minimizes changes to the original model. Porting the 

ZIT model from the C programming language to eBASIC actually simplified the 

model, as there was no reason to create a large array of buyers and sellers that was 

divided and processed via a fork/join process. Instead, each eBASIC copy used its 

own data set where the array size was simply limited to '1/maximum-number-of-

cores'.  Because of limited memory, however, it was necessary for the data to be 

placed in the 515 KB shared memory rather than local core memory.  The 

program itself, at 1,724 bytes, easily fit on each core. 

4.3.7. Experiment and Results 

The parameter sweep for the ASIC code included the number of agents 

and cores.  The number of cores was incremented from 1 to 16 in steps of one 

while the number of agents was tested from 10
3
 through 10

5
 by factor of ten 

increments.  A test of 10
6
 agents could not be performed given memory 

limitations.  The number of trades was set to 10
2
 greater than the number of 

agents and maximum buyer and seller values was 30. Table 5 shows the results of 
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30 runs for each parameter combination.  Moving data between shared in core 

memory, although transparent to the program, negatively impacted performance. 

Differences in relative speed multiplier for different number of cores are shown 

in Figure 6.  The maximum speed multiplier for this ASIC is an order of 

magnitude smaller than for the GPGPU. Despite an increase in the number of 

agents, the speed multiplier remains nearly identical for all cores with a value of 

8.65-8.69 for 16 cores. 

 

 

 
Table 5 - ASIC ZIT Results 

 Mean in Milliseconds Standard Deviation in Milliseconds 

Cores 10^5 

Agents 

10^4 

Agents 

10^3 

Agents 

10^5 

Agents 

10^4 

Agents 

10^3 

Agents 

1 986,110 98,693 9,874 437 81 7 

2 494,684 49,554 4,962 390 36 5 

3 332,037 33,231 3,328 265 28 3 

4 251,713 25,184 2,525 188 20 2 

5 206,530 20,660 2,070 140 15 3 

6 176,471 17,658 1,767 105 13 2 

7 155,705 15,580 1,561 87 7 2 

8 140,431 14,056 1,408 89 14 1 

9 130,789 13,091 1,316 84 5 1 

10 123,955 12,404 1,246 157 12 1 

11 119,898 11,995 1,206 117 18 3 

12 117,324 11,741 1,178 75 11 2 

13 116,556 11,668 1,172 107 13 1 

14 116,121 11,618 1,166 71 9 1 

15 115,007 11,509 1,161 46 5 15 

16 113,511 11,359 1,142 115 17 5 
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4.3.8. Recommendation 

ASIC coding will vary depending upon the type of accelerator.  However, 

any general parallel processing accelerator that permits SPMD or MPMD has 

potential to assist the social scientist with EBM development.  In particular, an 

ASIC that reliably scales across agent size would be a stable predictor for system 

design.  The low cost of the Parallella hardware ($100) is ideal for creating a 

computing cluster provided the problem's data can be broken into small chunks.  

Future research could include daisy chaining multiple boards together extending 

the number of available cores.  Additionally, each Parallella host CPU and its 

operating system can communicate via 1 GB Ethernet. This creates an opportunity 

for real-time model monitoring. 

 

Figure 6 - Speed Multiplier Results Using an ASIC 
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4.4. High Performance Computing Cluster 

4.4.1. Introduction 

A High Performance Computing (HPC) cluster provides a scalable 

environment for computations on large amounts of data that is distributed across 

multiple data nodes. 

4.4.2. Hardware 

A set of homogeneous data nodes store the distributed data, each of which 

also provides the necessary computing resources.  These data nodes, along with 

some additional computers for resource management, are commodity systems.  

Commodity systems are general-purpose hardware typically appropriate for 

servers.  The HPC cluster used for this experiment consists of 11 data nodes. 

Each node has 24 LPEs (hyper-threaded from 12 physical CPUs in a single IC) 

and 64 GB of memory. 

4.4.3. Justification 

Scalability is the primary justification for experimenting with this 

hardware. Several commercial companies offer the ability to rent a HPC of 

almost any size for short time periods. Thus, there is the potential for the social 

scientist to engage in very large scale EBM simulations. The hardware used in 

this experiment was a low use development system available at no cost. Access 

was via command line eliminating any GUI overhead. 
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4.4.4. Operating System and Environment 

The Cloudera 5.x platform (http://www.cloudera.com/) running on top of 

Linux was used as the computing environment. Cloudera uses a Hadoop 

distributed file system. This system emphasizes keeping data at rest since data 

movement takes time. This is accomplished by breaking the data into chunks, 

replicating each chunk so there are three identical copies, and distributing all 

chunks across the data nodes. Once placed, the data does not move, instead 

computing tasks are sent to the data. Cloudera uses the resource manager YARN 

to distribute work across the cluster and then collect the results. 

4.4.5. Programming Language 

The ZIT model was implemented in PySpark 1.6. Spark (Apache 

Software Foundation, 2016) is a general processing engine for use in HPC 

environments. PySpark is a Spark Python API that extends the Python 

programming language to the Spark programming model. Spark works with 

YARN to distribute multiple tasks across the cluster as shown in Figure 7. 

4.4.6. Approach 

Parallelization of the ZIT model using this hardware requires a modified 

approach. The underlying system communicates and stores data in a 

fundamentally different way than that of a single computing system. Since the 

data is immutable, transactions must take place using a series of map and filter 

operations.  A map operation applies some function to each element in a list, 
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returning a list of results. A filter operation applies a set of criteria to each 

element in a list and returns a subset of the original list. The result is a functional 

programming approach to the problem rather than the procedural approach used 

by some other languages. 

Unlike hardware using just physical cores or software threads, this HPC 

cluster necessitated a two dimensional approach to resource allocation. The 

concept of threads still exists as cores, but increasing the number of cores alone 

does not decrease execution time in a generally monotonic fashion. Instead, each 

data node also has executors that are responsible for implementing tasks on each 

core. Therefore, computational resources are assigned by stating the number of 

 

 

 

 

Figure 7 - How Spark Manages Work 

(Source: Cloudera, 2015a) 
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executors (1-n) and cores (1-c) (where n >= 1 and c >=1 and c <= the number of 

CPUs on the data node) to be used on the problem. 

4.4.7. Experiment and Results 

Given the two dimensions of resources, the first experiment was to 

discover the most efficient combination of cores and executors. It became clear 

there was no standard answer as a number of information sources, including 

Cloudera, all proposed different solutions. In a two part blog posting (Cloudera, 

2015a; Cloudera, 2015b) offered several operating environment parameter 

adjustments for finding the best solution. Apache Spark went further, including 

adjustments accounting for the physical relationship between the compute nodes 

and the data locality (Apache Software Foundation, 2017). Garbage collection 

could also make a difference (Wang & Huang, 2015). In each case, no single 

solution was offered. 

Using the available HPC, the ZIT model is run 30 times each using a 

parameter sweep from 1-44 executors and 1-24 cores with 10
4
 agents and 10

6
 

trades. The maximum prices for the agents were set to 30. The results in Figure 8 

show the average execution time (in seconds) in two dimensions of the effect of 

varying these two parameters. The maximum number of seconds was artificially 

capped at 43.8 seconds (the average across all results plus 3 standard deviations) 

to better visualize the differences between regions. The horizontal line shows the 

hyper-thread boundary of the twelve physical CPUs and shows the effect of 
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hyper-threading under some conditions. The number of data nodes also created a 

boundary condition at two times the number of data nodes (the right vertical line). 

Some combinations were always sub-optimal. For example, using a single 

executor always resulted in a poor time no matter how many cores were used. 

Using three or fewer cores was also a poor choice if the number of executors was 

not more than the number of data nodes. There were also unexplained slow areas, 

such as when six executors were used. 

 

 

 

 

Figure 8 - ZIT HPC Optimization Parameter Sweep Results 
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Optimal areas were discovered. Figure 9 shows the fastest execution times 

took place when using 10 to 12 executors coupled with 12 to 15 cores. This is in 

contrast to applying a maximum resource of 44 executors and 24 cores. That 

fewer computational resources results in a faster execution time at first appears 

counterintuitive. However, this may be the result of increased communication 

interactions between the data nodes at the operating environment level.  

The ZIT model itself required no inter-agent communication during 

execution. Each data node operated independently until local results were 

 

 

 

 

Figure 9 - ZIT HPC Optimization Analysis 
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reported back to the top-level job. Increasing the number of executors beyond the 

best time area, usually led to slower model execution times. This was particularly 

noticeable when the number of cores was also increased to the point that hyper-

threading was engaged.  Decreasing execution time may be best accomplished by 

increasing the number of data nodes. Doing so will most likely change the 

executor/core boundaries that delineate the area of best execution. The social 

scientist will need to gather information regarding their hardware environment 

before committing to a large run of their EBM. 

Using the discovered best combination for this problem, the second part of 

the experiment is performed. Selecting 12 executors and 14 cores, a parameter 

sweep of 10
3
 through 10

7
 agents is conducted. The number of trades is set to be 

always 10
2
 greater than the number of agents. Maximum agent trade values are set 

to 30. For each set of agents, 30 runs are conducted with the results shown in 

Table 6 and graphically in Figure 10. Previous speed multiplier calculations were 

 

 

 

Table 6 - ZIT Time to Complete on HPC Cluster 

 Agents  Mean in Milliseconds Standard Deviation in Milliseconds 

 10^3         17,688                       813  

 10^4         19,068                       765  

 10^5         34,427                       734  

 10^6        180,999                    3,971  

 10^7     1,714,556                   17,418  
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predicated on the single dimension of a LPE. The addition of executors in a 

second dimension precludes a simple speed multiplier calculation. Consequently, 

the comparison of agent scaling in Table 6 and Figure 10 is shown in raw 

execution time. 

 

4.4.8. Recommendation 

Using an HPC cluster could be an easier route for the social scientist as 

they are separated from direct interaction with the hardware in most cases. 

Various providers such as Amazon, Google, and Microsoft offer free training for 

their commercial offerings and rent time on a HPC that can be sized to the need of 

 

 

 

 

Figure 10 - HPC ZIT Speedup Results 
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the social scientists. Best use would be to create a small cluster used to learn the 

operating environment and test the viability of the model. Then scale the number 

of data nodes testing the speed of completion and the number of cores and 

executors. Finally, the full-scale model could be run with the maximum agents 

desired. For those social scientists desiring direct interaction with the hardware, it 

should be noted that all of the software, Linux, Hadoop, YARN, and Spark are 

available as open source at no cost. The software may be used on hardware as 

simple as the Raspberry Pi. 
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5. MODEL VERIFICATION AND VALIDATION 

 

 

 

5.1. Verification 

The ZIT model is a simple model, as previously illustrated in Table 2. The pre-

existing code used for CPU parallelization was used as a source for porting to the new 

hardware. Each model's code was verified as correct by first correcting any 

implementation syntax errors in the programming language. Once correct, the outcomes 

of any functions were examined by using test data with known outcomes. Finally, the 

assembled code was run using a small number of agents and trades to ensure end-to-end 

completeness. 

5.2. Validation 

The purpose of validation is to, "show that the model actually works in a similar 

fashion to the real world" (Wilensky & Rand, 2015, p. 335). The ZIT model, however, is 

a theoretical model with no direct connection to real world trading. A trading model can 

be considered structurally valid (Cioffi-Revilla, 2014, pp. 297-299) if it is internally 

consistent with the manner in which real traders operate, no matter how simply. For a 

trade to occur there must be at least one willing buyer and one willing seller. The ZIT 

model does follow this simple rule. The model also provides the mean and standard 

deviation of the overall trade results for each run. These values were examined and, 

despite the number of agents and trades changing, were found to be internally consistent. 
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6. SUMMERIZED RESULTS AND CONCLUSION 

 

 

 

This concluding chapter restates key research findings in Section 6.1.  

Suggestions and opportunities for extending this thesis are found in Section 6.2, and 

some concluding thoughts are in Section 6.3. Table 7 recaps the research questions and 

findings. 

6.1. Overview of Research Findings 

Simple SPSD EBM frameworks such as NetLogo can quickly run out of 

computational resources as a model increases in size.  Bypassing frameworks and directly 

using the underlying programming languages allows more flexibility, but are still 

constrained unless a language is fully integrated with the hardware capabilities.  Three 

research questions were explored.  1) Does the underlying hardware play a role in the 

social scientist's capability to create large-scale models? 2) If so, does the hardware 

change the approach and skills needed for modeling? 3) Is it worth the effort? 

A well-coded model in any programming language is still restricted by the 

computational resources made available by the hardware.  A fast CPU operating 

sequentially is limited by the time it takes to execute a single instruction and the size of 

memory that contains the model.  Dividing the problem across multiple computational 

resources decreases the time to complete a model run.  To explore its problem space, an 

EBM may need to be run thousands of times with different parameters.  Figure 11 
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provides a comparison of the raw execution time results from all three experiments. For 

each, the intersection of agents and threads shows a circle whose area represents the 

mean execution time in milliseconds. (An approximation of threads for the HPC model 

was calculated as 168, 12 executors times 14 cores.) The GPGPU achieved the fastest 

execution time, but the HPC was able to handle a greater number of agents. The ASIC 

was the slowest hardware, but provided uniform scaling across all agents as shown in 

Figure 6. The ASIC was also the easiest to implement using an SPMD approach. All 

experiments in this thesis demonstrated a decrease in execution time, and increase in 

speed multiplier, by utilizing parallel capable hardware.  Decreasing run time permits 

larger models to be executed with the same period. The first research question is 

answered: The correct hardware can increase the social scientist's capability to 

create large-scale models by allowing for the possibility of parallelism. 

The ZIT model was chosen because of its simplicity.  This embarrassingly 

parallel model only requires agent communication at the conclusion of program 

execution.  Despite its simplicity, implementation in each experiment required a different 

approach.  The first step was to obtain a deeper knowledge of the hardware than is 

required for sequential computing.  Surprisingly the HPC cluster required the least 

amount of hardware knowledge.  As a collection of commodity computers, it was only 

necessary to know the number of data nodes, LPEs per data node, and the amount of 

memory available at each data node.  Discovering the appropriate amount of 

computational resources for the problem, however, was more complicated as it required a 

two-step process and a two dimensional solution. 
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The ASIC as a coprocessor presented itself ready for SPMD.  Therefore, 

understanding the access and use of a single LPE was identical to understanding multiple 

LPEs.  Any hardware offering SPMD should be sought after by the social scientist. 

The GPGPU required the most effort in understanding the hardware.  Originally 

designed to speed the display of images on monitors, this hardware was quickly diverted 

into a role as a computational resource.  Its beginnings as a GPU tie it to smaller memory 

 

 

 

 

Figure 11 - Comparison of Three Model Results 
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than is typically available on the host and to simpler computational LPEs.  Careful 

attention to memory management becomes critical, quirks such as warp size may modify 

the model, and the simple computational core will not support some functions normally 

available to a programming language. 

The second step was to understand the affect hardware had on the programming 

languages that in turn affected the programming approach.  The ASIC hardware 

supporting SPMD required but a single program that could be distributed without further 

modification to all LPEs.  The programming language eBASIC is a sub-dialect of 

decades old simple language to which has been added a small number of extensions 

specific to the Parallella, parallel processing, and concurrent processing.  Despite the 

simplicity of the language, it was fully capable of implementing the ZIT model.  The 

language, combined with the SPMD architecture, made implementation easy, as very few 

hardware specific changes were necessary.  Not as easy was the GPGPU implementation 

that leaned heavily on the CUDA environment.  As an extension to the C programming 

language, CUDA kernels mimicked C functions.  Thus, it is necessary to understand how 

CUDA communicates with the hardware.  Any difficulties were with ensuring GPGPU 

resources were properly allocated through the kernel interface.  Fortunately several 

CUDA error checking functions are available that should be understood and used 

routinely by the social scientist.  Finally, the HPC cluster required the ZIT model to be 

written using a functional programming approach.  A data set of pre-trading agents was 

produced and distributed to the data nodes.  Once created the data set was immutable thus 

could not be changed.  A sequence of functions and filters were applied to the immutable 
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data to transform it into a new dataset with the trade results.  The second research 

question is answered: The hardware does change the approach and skills needed for 

modeling.  The amount of change and the level of programming skills will vary 

between hardware types. SPMD co-processer architecture may require the least 

additional skills. 

In most cases, social scientists would be best advised to use an EBM framework 

or sequential programming.  Not every model will have so many agents, such a large 

geographic space, or immense communication that a parallel EBM solution would be 

worth the extra effort.  In such cases, however, a parallel EBM may be the only solution.  

For some hardware architectures, it might be best for the social scientist to collaborate 

with a computer scientist. The third research question is answered: Is it worth the effort 

only when it is the only available solution. Table 7 provides a recap. 

 

 
Table 7 - Research Question Recap 

Number Research Question Research Answer 

1 Does the underlying 

hardware play a role in the 

social scientist's capability 

to create large-scale 

models? 

The correct hardware can increase the social 

scientist's capability to create large-scale models 

by allowing for the possibility of parallelism. 

2 If so, does the hardware 

change the approach and 

skills needed for modeling? 

The hardware does change the approach and skills 

needed for modeling.  The amount of change and 

the level of programming skills will vary between 

hardware types. A SPMD co-processer 

architecture may require the least additional skills. 

3 Is it worth the effort? Is it worth the effort only when it is the only 

available solution. 
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6.2. Future Research 

An obvious research area is the creation of a parallel EBM framework for each of 

these hardware configurations and some work such as FLAME 

(http://www.flamegpu.com/) has been completed in this area.  These frameworks were 

not explored in this thesis as the focus was on hardware.  Parallel EBM frameworks 

would solve the need for the social scientist to acquire in-depth hardware knowledge. 

Hardware specific research should include increasing the number of data nodes in 

HPC clusters, using multiple GPGPU boards on a single host, HPC clusters whose 

commodity computers include GPGPU boards, chaining ASIC boards to increase the 

number of LPEs, and exploring HPC clusters with installed ASIC coprocessors. 

Finally, testing a more complex EBM in these environments may better compare 

the architectures.  In particular, an EBM that requires agent communication during and 

not just at the conclusion of the model run. In this case, it may be essential to tie the 

locality of the agents to a computational LPE so to minimize the need to transfer 

information across computational boundaries.  

6.3. Conclusion 

Simple EBMs that fit within the computational limitations of a single computer 

executing sequential tasks may no longer be adequate for future EBM questions.  The era 

of big data and data science has embraced the concept of analysis of populations rather 

than just samples. There is no reason to expect EBMs will be any different with the wide 
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array of available computing power. This thesis will hopefully be a benefit to the social 

scientist who is faced with a large-scale model and limited time. 
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APPENDIX A - LEXICON 

 

As with any specialization, there is terminology specific to EBM parallelization that a 

social scientist must know. 

Application Programming Interface (API): A means for a software component to 

communicate with another software component. A component may provide the API as a 

standardized means by which another component may request access to data or resources. 

ASIC (Application Specific Integrated Circuit): An integrated circuit (chip) designed 

for some specific use. An example for parallel processing is a set of homogeneous RISC 

processors in a mesh grid on a single chip. 

Cellular Automata (CA): A limited type of EBM that is of the simplest types of social 

simulation models. There are no agents; instead, each region in some environment reacts 

to its surroundings. Over time, these reactions can create the illusion of movement. 

Chip: See Integrated Circuit. 

Cluster: See Computer Cluster. 

Computer Cluster: A collection of computers of which some or all can be focused on 

the same task. Resource allocation within the cluster is left to cluster management 

software, thus the cluster can be viewed as a single system. 

Concurrent Computing: The ability to simultaneously execute several tasks that may be 

unrelated. Similar, but distinct from parallel computing. 

Core: See Logical Processing Element. 

CPU (Central Processing Unit): An electronic circuit, or chip, which performs low-

level program instructions. Multiple CPUs on a single chip are referred to as cores. A 

single chip with multiple cores can be called a socket. 

EBM Framework: A software application purposely designed to facilitate the execution 

of an Entity-Based Model. 
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GPGPU (General purpose computing on graphics processing units: The use of a 

GPU to perform non-graphic computational tasks normally performed by a CPU. EBM 

frameworks that use a GPU for computing fall under this definition. 

GPU (Graphics Processing Unit): A system of parallel configurations that can 

efficiently process blocks of data simultaneously. Originally designed to speed up visual 

displays, they have been adapted to scientific computing. (See SIMD.) 

Hadoop: Apache Hadoop is open source software that provides an environment for 

distributing large data sets across a computer cluster. Also, see YARN. 

High performance computing (HPC): An increase in computation power achieved by 

aggregating multiple computing resources and focusing them on a single task. 

Integrated Circuit (IC): A collection of electronic components and wires on a single flat 

piece of semiconductor material. An essential component of most current computing 

systems. 

Logical Processing Element (LPE): The use of hyper-threading technology can create 

the illusion of multiple processors where there is but one physically. Most often, there 

appears to be two logical processing elements per physical element. When determining 

the number of available cores, software applications count these logical processing 

elements. 

MIMD (Multiple instruction streams, multiple data streams): Multiple cores work on 

multiple blocks of data simultaneously. 

MISD (Multiple instruction streams, single data stream): Multiple cores work on the 

same block of data. Useful in situations where a core could fail to produce correct results. 

Network on Chip (NoC): One or more communication networks between cores on a 

single integrated circuit. The network can operate either synchronously or 

asynchronously.  

Parallel Computing: The ability to simultaneously execute a group of tasks created by 

dividing an original task into many smaller identical tasks. Similar, but distinct from 

concurrent computing. 

RISC (Reduced instruction set computing) coprocessor: A special purpose processor 

using a limited but fast set of instructions that is tightly coupled to the CPU. 



55 

 

SOC (System on a Chip): A single integrated circuit that encompasses all necessary 

components for a functioning computer. 

Socket: See CPU. 

SIMD (Single instruction stream, multiple data streams): A single set of instructions 

is simultaneously applied to multiple blocks of data. (See GPU.) 

SISD (Single instruction stream, single data stream): A single set of instructions is 

applied to a single block of data. This is a sequential (non-parallel) process. 

Speed Multiplier: A relative comparison of execution time where the base is set to the 

time to complete using a single LPE or core. The Speed Multiplier is calculated by 

dividing the base execution time by the execution time using multiple LPEs. 

Speedup: See Speed Multiplier. 

YARN (Yet Another Resource Negotiator): An operating system for large-scale 

distributed data processing. Used by Hadoop. 
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