
Dale K. Brearcliffe

27 October 2017

Parallelization of Entity-Based Models in

Computational Social Science: A Hardware

Perspective

Research Questions

1) Does the underlying hardware play a role

in the social scientist's capability to create

large-scale models?

2) If so, does the hardware change the

approach and skills needed for modeling?

3) Is it worth the effort?

An Abstraction of an Entity-Based

Model's Relationship to Hardware

Simulation (An Entity-Based Model)

General EBM Framework Designed EBM Framework

General Purpose Programming Language

Operating System

Hardware

Programming Language Considerations

 EBM frameworks were rejected because there is no assurance that

the framework developers had taken full advantage of the

underlying hardware

 Programming languages are closer to the hardware and makes it

easier to see how the hardware created or solved EBM challenges

 The programming language was selected based on:

 General availability

 The EBM that was to be implemented

 The hardware architecture

 This process aided in answering research question three, "Is it

worth it?"

Hardware Categories
Hardware Category Description

Multi-Core Central Processing Unit A CPU with more than one logical processing

element.

Graphic Processing Unit Composed of thousands of logical processing

elements. These LPEs do not communicate with each

other, are simpler, and less capable individually than

those found in CPUs.

Application Specific Integrated

Circuit

Contains multiple highly specialized RISC cores that

operate independently or collectively on internal

NoCs.

Homogeneous Computing Nodes Nodes of similarly designed and configured multi-

core computers physically located together and

optimized for high-speed communication.

Heterogeneous Computing Nodes A distributed network of nodes different types of

computer hardware and operating systems. They can

be geographically distributed, communicating across

the Internet.

Pseudo Code Parallelization of the ZIT

Model

INSTANTIATE and INITIALIZE BUYER, SELLER, DATA and THREAD objects;

Assign sub-populations of BUYERS and SELLERS to THREADS;

FORK all THREADS;

FOR each THREAD, REPEAT:

 - Randomly activate 1 BUYER agent + 1 SELLER agent:

 - - BUYER proposes a BID price;

 - - SELLER proposes an ASK price;

 - - IF (BID > ASK) THEN

 - - - Pick EXECUTION price between BID and ASK;

 - - - INCREMENT BUYER holdings;

 - - - DECREMENT SELLER holdings;

 - - - Collect DATA on the trade;

 - INCREMENT the attempted number of trades;

 - END when maximum trade attempts exceeded;

JOIN all THREADS;

Collect final DATA;

(Source: McCabe, et al., 2016)

General Purpose Graphic Processing

Unit (GPGPU)

NVIDIA Jetson TX1 Development Kit

https://devblogs.nvidia.com/parallelforall/nvidia-jetson-tx1-supercomputer-on-module-drives-next-wave-of-autonomous-machines/

Comparison of CPU to GPGPU Cores

(Source: NVIDIA Corporation, 2017d)

GPGPU Threads, Blocks, Grids, and

Memory

(Source: NVIDIA Corporation, 2017e)

GPGPU ZIT Results

Mean in Milliseconds Standard Deviation in Milliseconds

Threads 10^6

Agents

 10^5

Agents

10^4

Agents

10^3

Agents

 10^6

Agents

 10^5

Agents

10^4

Agents

10^3

Agents

 10^0 158,001 50,929 5,916 306 21,678 13,643 2,432 53

 10^1 56,655 9,851 756 45 10,106 2,598 169 19

 10^2 33,566 2,333 184 26 21,664 374 26 12

 10^3 17,353 1,530 142 20 5,235 129 24 8

 10^4 9,430 789 66 --- 3,483 35 14 ---

 10^5 8,588 702 --- --- 3,378 2 --- ---

 10^6 4,806 --- --- --- 2,461 --- --- ---

Speedup Results Using a GPGPU

0

10

20

30

40

50

60

70

80

90

100

 10^0 10^1 10^2 (96) 10^3 (992) 10^4 (9,984) 10^5 10^6

S
p

ee
d

 M
u

lt
ip

li
er

Threads (Actual Threads)

Relative Speed Increase by Thread and Agent

10^3 Agents 10^4 Agents 10^5 Agents 10^6 Agents

Application Specific Integrated Circuit

(ASIC)

Adapteva Parallella with Epiphany III ASIC

http://www.adapteva.com/parallella/

The Epiphany Architecture (64 cores

shown)

(Source: Adapteva, 2013)

ASIC ZIT Results
Mean in Milliseconds Standard Deviation in Milliseconds

Cores 10^5

Agents

10^4

Agents

10^3

Agents

10^5

Agents

10^4

Agents

10^3

Agents

1 986,110 98,693 9,874 437 81 7

2 494,684 49,554 4,962 390 36 5

3 332,037 33,231 3,328 265 28 3

4 251,713 25,184 2,525 188 20 2

5 206,530 20,660 2,070 140 15 3

6 176,471 17,658 1,767 105 13 2

7 155,705 15,580 1,561 87 7 2

8 140,431 14,056 1,408 89 14 1

9 130,789 13,091 1,316 84 5 1

10 123,955 12,404 1,246 157 12 1

11 119,898 11,995 1,206 117 18 3

12 117,324 11,741 1,178 75 11 2

13 116,556 11,668 1,172 107 13 1

14 116,121 11,618 1,166 71 9 1

15 115,007 11,509 1,161 46 5 15

16 113,511 11,359 1,142 115 17 5

Speedup Results Using an ASIC

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
p

ee
d

 M
u

lt
ip

li
er

Cores

Relative Speed Increase by Core and Agent

10^3 Agents 10^4 Agents 10^5 Agents

High Performance Computing (HPC)

Cluster

Blue Gene/L

https://asc.llnl.gov/computing_resources/bluegenel/

How Spark Manages Work

(Source: Cloudera, 2015a)

ZIT HPC Optimization Parameter Sweep

Results

ZIT HPC Optimization Analysis

Next best times
Best time (12 E, 14 C)

Best times area (10x12 E, 12x15 C)

ZIT Time to Complete on HPC Cluster

 Agents Mean in Milliseconds Standard Deviation in Milliseconds

 10^3 17,688 813

 10^4 19,068 765

 10^5 34,427 734

 10^6 180,999 3,971

 10^7 1,714,556 17,418

HPC ZIT Speedup Results

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

1,800,000

2,000,000

10^3 10^4 10^5 10^6 10^7

T
im

e
(M

il
li

se
co

n
d

s)

Number of Agents

Mean Time to Complete Model Run

Execution Times

Larger circles are longer execution times

Research Questions
1) Does the underlying hardware play a role in the social scientist's

capability to create large-scale models?

 The correct hardware can increase the social scientist's

capability to create large-scale models by allowing for the

possibility of parallelism

2) If so, does the hardware change the approach and skills needed for

modeling?

 The hardware does change the approach and skills needed

for modeling. The amount of change and the level of

programming skills will vary between hardware types. A

SPMD co-processer architecture may require the least

additional skills

3) Is it worth the effort?

 Is it worth the effort only when it is the only available

solution

Future Work
 Hardware specific research should include:

 Increasing the number of data nodes in HPC clusters

 Using multiple GPGPU boards on a single host

 HPC clusters whose commodity computers include GPGPU boards

 Chaining ASIC boards to increase the number of LPEs

 Exploring HPC clusters with installed ASIC coprocessors

 Using more complex EBMs that requires agent communication

during and not just at the conclusion of the model run

 Tying agent and environment locality to an LPE minimizing data

transfer across computational boundaries

List of Abbreviations
 Agent-Based Model ABM

 Application Programming Interface API

 Application Specific Integrated Circuit ASIC

 Cellular Automata CA

 Central Processing Unit CPU

 Computational Social Science CSS

 Compute Unified Device Architecture CUDA

 Entity-Based Model EBM

 General Purpose Graphics Processing Unit GPGPU

 GNU Compiler Collection GCC

 GNU's Not Unix (A recursive acronym) GNU

 Graphics Processing Unit GPU

 High Performance Computing HPC

 Individual-Based Model IBM

List of Abbreviations
 Integrated Circuit IC

 Logical Processing Element LPE

 Multiple Instruction Multiple Data MIMD

 Multiple Instruction Streams Single Data Stream MISD

 Network on Chip NoC

 NVIDIA CUDA Compiler NVCC

 Reduced Instruction Set Computing RISC

 Single Instruction Multiple Data SIMD

 Single Instruction Stream Single Data Stream SISD

 Single Program Multiple Data SPMD

 System on Chip SOC

 Yet Another Resource Negotiator YARN

 Zero-Intelligence Traders ZIT

Lexicon
 Application Programming Interface (API): A means for a software component to communicate with

another software component. A component may provide the API as a standardized means by which another

component may request access to data or resources.

 ASIC (Application Specific Integrated Circuit): An integrated circuit (chip) designed for some specific

use. An example for parallel processing is a set of homogeneous RISC processors in a mesh grid on a single chip.

 Cellular Automata (CA): A limited type of EBM that is of the simplest types of social simulation models.

There are no agents; instead, each region in some environment reacts to its surroundings. Over time, these

reactions can create the illusion of movement.

 Chip: See Integrated Circuit.

 Cluster: See Computer Cluster.

 Computer Cluster: A collection of computers of which some or all can be focused on the same task. Resource

allocation within the cluster is left to cluster management software, thus the cluster can be viewed as a single

system.

 Concurrent Computing: The ability to simultaneously execute several tasks that may be unrelated. Similar, but

distinct from parallel computing.

 Core: See Logical Processing Element.

 CPU (Central Processing Unit): An electronic circuit, or chip, which performs low-level program

instructions. Multiple CPUs on a single chip are referred to as cores. A single chip with multiple cores can be

called a socket.

 EBM Framework: A software application purposely designed to facilitate the execution of an Entity-Based

Model.

Lexicon
 GPGPU (General purpose computing on graphics processing units: The use of a GPU to perform non-

graphic computational tasks normally performed by a CPU. EBM frameworks that use a GPU for computing

fall under this definition.

 GPU (Graphics Processing Unit): A system of parallel configurations that can efficiently process blocks of

data simultaneously. Originally designed to speed up visual displays, they have been adapted to scientific

computing. (See SIMD.)

 Hadoop: Apache Hadoop is open source software that provides an environment for distributing large data sets

across a computer cluster. Also, see YARN.

 High performance computing (HPC): An increase in computation power achieved by aggregating multiple

computing resources and focusing them on a single task.

 Integrated Circuit (IC): A collection of electronic components and wires on a single flat piece of

semiconductor material. An essential component of most current computing systems.

 Logical Processing Element (LPE): The use of hyper-threading technology can create the illusion of multiple

processors where there is but one physically. Most often, there appears to be two logical processing elements per

physical element. When determining the number of available cores, software applications count these logical

processing elements.

 MIMD (Multiple instruction streams, multiple data streams): Multiple cores work on multiple blocks

of data simultaneously.

 MISD (Multiple instruction streams, single data stream): Multiple cores work on the same block of data.

Useful in situations where a core could fail to produce correct results.

Lexicon
 Network on Chip (NoC): One or more communication networks between cores on a single integrated

circuit. The network can operate either synchronously or asynchronously.

 Parallel Computing: The ability to simultaneously execute a group of tasks created by dividing an original task
into many smaller identical tasks. Similar, but distinct from concurrent computing.

 RISC (Reduced instruction set computing) coprocessor: A special purpose processor using a limited but
fast set of instructions that is tightly coupled to the CPU.

 SOC (System on a Chip): A single integrated circuit that encompasses all necessary components for a
functioning computer.

 Socket: See CPU.

 SIMD (Single instruction stream, multiple data streams): A single set of instructions is simultaneously
applied to multiple blocks of data. (See GPU.)

 SISD (Single instruction stream, single data stream): A single set of instructions is applied to a single
block of data. This is a sequential (non-parallel) process.

 Speed Multiplier: A relative comparison of execution time where the base is set to the time to complete using a
single LPE or core. The Speed Multiplier is calculated by dividing the base execution time by the execution
time using multiple LPEs.

 Speedup: See Speed Multiplier.

 YARN (Yet Another Resource Negotiator): An operating system for large-scale distributed data processing.
Used by Hadoop.

